期刊文献+

Visible Light Photocatalysis of Ni-Deposited TiO_(2) Nanotubes for Methyl Orange Degradation in Alkaline Medium

原文传递
导出
摘要 The photocatalysis of Ti O2nanotubes(Ti/TNT) and Ni-deposited Ti O2nanotubes(Ti/TNT–Ni) for methyl orange degradation was investigated.Methyl orange was selected as the model pollutant,and its photocatalytic degradation was determined in 1 mol/L KOH solution.Ti/TNT was produced by anodizing method,and the electrodeposition of nickel on TNT was performed galvanostatically.The characterization of electrodes was performed by scanning electron microscopy,energy-dispersive X-ray spectroscopy and X-ray diffraction analysis.The electrochemical behavior of the electrodes was determined by cyclic voltammetry and electrochemical impedance spectroscopy.The irradiation was applied by visible light source(k = 635 nm) for 48 h.UV/vis spectroscopy was used for determination of the concentration of methyl orange.Furthermore,after 48-h irradiation,the solutions were analyzed by Fourier transform infrared spectroscopy.Results showed that the concentration of methyl orange decreased from 100 ppm(10-6) to 16 ppm,after48-h irradiation with the photocatalysis of Ti/TNT–Ni. The photocatalysis of Ti O2nanotubes(Ti/TNT) and Ni-deposited Ti O2nanotubes(Ti/TNT–Ni) for methyl orange degradation was investigated.Methyl orange was selected as the model pollutant,and its photocatalytic degradation was determined in 1 mol/L KOH solution.Ti/TNT was produced by anodizing method,and the electrodeposition of nickel on TNT was performed galvanostatically.The characterization of electrodes was performed by scanning electron microscopy,energy-dispersive X-ray spectroscopy and X-ray diffraction analysis.The electrochemical behavior of the electrodes was determined by cyclic voltammetry and electrochemical impedance spectroscopy.The irradiation was applied by visible light source(k = 635 nm) for 48 h.UV/vis spectroscopy was used for determination of the concentration of methyl orange.Furthermore,after 48-h irradiation,the solutions were analyzed by Fourier transform infrared spectroscopy.Results showed that the concentration of methyl orange decreased from 100 ppm(10-6) to 16 ppm,after48-h irradiation with the photocatalysis of Ti/TNT–Ni.
机构地区 Chemistry Department
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第7期858-865,共8页 金属学报(英文版)
基金 Cukurova University Research Fund (No.FEF2013BAP4)
  • 相关文献

参考文献1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部