期刊文献+

混合编码粒子ABC算法的CR认知决策引擎 被引量:1

Cognitive radio decision engine based on hybrid encoding particle ABC optimization algorithm
下载PDF
导出
摘要 认知决策引擎是认知无线电(Cognitive Radio,CR)的核心。为适应CR参数的自适应重配置,提出了一种改进的二进制人工蜂群(Binary Artificial Bee Colony algorithm,BABC)算法。该算法在基本BABC算法的基础上,加入了反向学习初始化机制、混合编码规则以及社会认知策略,保证了个体的多样性、提高了搜索速度。给出了该算法的基本步骤,并在多载波通信系统中对算法性能进行了仿真。仿真结果表明,基于该算法的CR认知决策引擎的收敛速度和精度均优于经典的遗传算法(Genetic Algorithm,GA)和BABC算法,优化得到的系统参数具有更好的性能。 The core of the Cognitive Radio(CR)is decision engine. In order to adapt reconfiguration of the CR parameters, an improved Binary Artificial Bee Colony(BABC) algorithm is proposed. The algorithm is based on the basic BABC algorithm, and the opposition-based learning initialization mechanism, hybrid coding rules, and social cognitive strategies are added to ensure the diversity of individuals to improve the search speed. The key steps of the proposed Hybrid Encoding Particle Bee Colony(HABC)optimization algorithm are presented and multicarrier system is used for simulation analysis. The experimental results show that the convergence speed and accuracy of the proposed method is superior to the classical Genetic Algorithm(GA)and BABC method, CR decision engine optimization parameters have better performance.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第14期57-62,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61379005 No.61072138)
关键词 混合编码 粒子蜂群算法 认知无线电 决策引擎 hybrid encoding particle artificial bee colony cognitive radio decision engine
  • 相关文献

参考文献13

  • 1Rondeau T W, Le B, Maldonado D, et al.Cognitive radio formulation and implementation[C]//IEEE Proceedings of Crown Com,2006: 1-10.
  • 2Rieser C J.Biologically inspired cognitive radio engine model utilizing distributed genetic algorithms for se- cure and robust wireless communications and network- ing[D].Virginia: Virginia Polytechnic Institute and State University, 2004.
  • 3Zhang X Q,Huang Y Q,Jiang H,et al.Design of cogni- tive radio node engine based on genetic algorithmiC]// IEEE Conference on Information Engineering,2009:22-25.
  • 4赵知劲,徐世宇,郑仕链,杨小牛.基于二进制粒子群算法的认知无线电决策引擎[J].物理学报,2009,58(7):5118-5125. 被引量:32
  • 5Karaboga D.An idea based on honeybee swarm for numeri- cal optimization, Technical Report TR06[R].[S.1.]: Com- puter Engineering Department,Engineering Faculty,Erci- yes University, 2005.
  • 6Marinakis Y, Marinaki M, Matsatsinis N.A hybrid dis- crete artificial bee colony-GRASP algorithm for cluster- ing[C]//International Conference on Computers Industrial Engineering, Troyes, France, 2009 : 548-553.
  • 7蒋科辉.Taguchi方法混合ABC算法的车辆部件优化设计fJ].计算机工程与应用,2014,50(1):246-250.
  • 8李鑫滨,石爱武.基于二进制人工蜂群算法的认知无线电决策引擎[J].燕山大学学报,2012,36(5):439-444. 被引量:5
  • 9周京华,张小凤,张光斌.基于人工蜂群算法的超声回波参数估计[J].计算机工程与应用,2014,50(14):189-193. 被引量:2
  • 10刘婷,张立毅,鲍韦韦,邹康.全局最优引导的差分演化二进制人工蜂群算法[J].计算机工程与应用,2013,49(6):43-47. 被引量:5

二级参考文献41

  • 1赵知劲,郑仕链,邢国际,尚俊娜.应用遗传算法的认知无线电自适应参数调整[J].压电与声光,2007,29(1):90-92. 被引量:2
  • 2Rondeau T W,Rieser C J,Bostian C W 2004 SDR Forum Technical Conference C-3
  • 3Rondeau T W,Le B,Maldonado D,Scaperoth D,Bostian C W 2006 The first International Conference on Cognitive Radio Oriented Wireless Networks and Communication
  • 4Hauris J F 2007 IEEE International Symposium on Computational Intelligence in Robotics and Automation 427
  • 5Newman T R,Barker B A,Wyglinski A M,Agah A,Evans J B,Minden G J 2007 Wiley Wireless Communications and Mobile Computing 7 1129
  • 6Newman T R,Rajbanshi R,Wyglinski A M,Evans J B,Minden GJ 2007 The second International Conference on Cognitive Radio Oriented Wireless Networks and Communications
  • 7Zhao Z J,Zheng S L,Xu C Y 2007 WSEAS Transactions on Communications 6 773
  • 8Shi Y,Eberhart R 1998 IEEE International Conference on Evolutionary Computation 69
  • 9Kennedy J,Eberhart R 1995 IEEE International Conference on Neural Networks 4 1942
  • 10Kennedy J,Eberhart R 1997 The Conference on Systems,man,and Cybernetics 4104

共引文献40

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部