期刊文献+

基于改进的粒子群算法优化LSSVM股价预测研究 被引量:1

Study on the Prediction for Stock Price Based on the Optimized LSSVM of the Improved Particle Swarm Algorithm
下载PDF
导出
摘要 为了提高股票价格的预测精度,针对股票价格数据的非平稳非线性的特性,本文运用改进的PSO实现LSSVM的核参数和惩罚系数自适应选择,提出一种SAPSO优化LSSVM股价预测模型,并以此进行实证分析。通过基于SAPSO-LSSVM算法的1步、3步、5步和7步预测结果和不同模型的预测时间和预测均方误差的对比结果可知,SAPSO-LSSVM股价预测模型具有预测精度高,预测时间短的优点,同时能够实现预测参数的自适应选择。 In order to improve the prediction accuracy of the stock price, stock price data for the nonlinear and non-stationary characteristics, this paper used the improved PSO to implement the self-adaptive selection of the LSSVM kernel parameter and penalty coefficient, and proposed a prediction model for stock price on SAPSO optimized LSSVM to analyze a case. The results showed that it had the high prediction accuracy, the advantages of short time and also could realize the self-adaptive selection for forecasting parameters based on prediction results in 1 step, 3 step, 5 step and the 7 on the SAPSO-LSSVM algorithm and the comparison between prediction time and the mean square error of different models.
作者 刘家旗
出处 《山东农业大学学报(自然科学版)》 CSCD 2015年第4期628-631,共4页 Journal of Shandong Agricultural University:Natural Science Edition
关键词 粒子群算法 股票预测 LSSVM Particle Swarm Algorithm prediction for stock price Least Squares Support Vector Machine(LSSVM)
  • 相关文献

参考文献6

二级参考文献24

  • 1牛昂.VALUE AT RISK: 银行风险管理的新方法[J].国际金融研究,1997(4):61-65. 被引量:43
  • 2FELDMANN A,GILBERT AC,WILLINGER W,et al.Looking behind and beyond self-similarity:Scaling phenomena in measured WAN traffic[A ].Proceedings of 35th Annual Allerton Conference on Communication,Control,and Computing[C],1997.269-280.
  • 3LELAND WE,TAQQU MS,WILLINGER W,et al.On the self-similar nature of ethernet traffic[J].IEEEE/ACM Transaction on Networking,1994,2(1):1-15.
  • 4WILLINGER W,TAQQU MS,SHERMAN R,et al.Self-Similarity Through High-Variability:Statistical analysis of ethernet LAN traffic at the source level[A].Proceedings of the ACM S IGCOMM'95[C],1995.
  • 5HOMIK KM,STINCHCOME M,WHITE H.Multilayer feedforward network universal approximators[J].Neural Network,1989,2(2):259-366.
  • 6焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995..
  • 7KantzH.非线性时间序列分析[M].北京:清华大学出版社,2000..
  • 8Paxson V, Floyd S. Wide Area Traffic:The Failure of Poisson Modeling[J ]. IEEE/ACM Transaction on Networking, 1995,6(3) :226 -244.
  • 9Chen Bor - Sen, Peng Sen - Chueh, Wang Ku - Chen. Traffic Modeling, Prediction, and Congestion Control for HighSpeed Networks: A Fuzzy AR Approach[ J ]. IEEE Transaction on Fuzzy Systems,2000,8(5) :491 - 506.
  • 10Vapnik V N. Statistical Learning Theory[ M ]. New York:New York Wiley,1998.

共引文献112

同被引文献14

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部