摘要
提出一种新型的分裂步长时域有限差分(NSS-FDTD)法,并对其数值色散进行分析。该方法基于Split-Step方案和Crank-Nicolson方案,采用新的矩阵分解形式,与传统的FDTD算法、SS-FDTD算法相比,减少了计算复杂度。新型算法的推导程序简单,且具有良好的数值色散特性,还加入了一阶Mur吸收边界条件,给出一阶Mur吸收边界差分方程。将数值实验的结果和传统FDTD方法及理论值进行比较,数值结果一致性较好。
A new split step finite difference time domain(NSS?FDTD)algorithm is presented,and its numerical dispersion is analyzed. The method is based on the schemes of Split?Step and Crank?Nicolson,adopted new matrix decomposition form. Compared with traditional algorithms of FDTD and SS?FDTD,the proposed algorithm can reduce computational complexity,and has simple deduction procedure and better numerical dispersion characteristic. The first?order Mur absorbing boundary condition is added in this paper,and its difference equation is presented. The numerical experiment results were compared with traditional FDTD method and theoretical values. The consistence of numerical results is better.
出处
《现代电子技术》
北大核心
2015年第15期117-119,122,共4页
Modern Electronics Technique