期刊文献+

新型分裂步长时域有限差分法

New method of finite difference time domain for split step
下载PDF
导出
摘要 提出一种新型的分裂步长时域有限差分(NSS-FDTD)法,并对其数值色散进行分析。该方法基于Split-Step方案和Crank-Nicolson方案,采用新的矩阵分解形式,与传统的FDTD算法、SS-FDTD算法相比,减少了计算复杂度。新型算法的推导程序简单,且具有良好的数值色散特性,还加入了一阶Mur吸收边界条件,给出一阶Mur吸收边界差分方程。将数值实验的结果和传统FDTD方法及理论值进行比较,数值结果一致性较好。 A new split step finite difference time domain(NSS?FDTD)algorithm is presented,and its numerical dispersion is analyzed. The method is based on the schemes of Split?Step and Crank?Nicolson,adopted new matrix decomposition form. Compared with traditional algorithms of FDTD and SS?FDTD,the proposed algorithm can reduce computational complexity,and has simple deduction procedure and better numerical dispersion characteristic. The first?order Mur absorbing boundary condition is added in this paper,and its difference equation is presented. The numerical experiment results were compared with traditional FDTD method and theoretical values. The consistence of numerical results is better.
作者 林智参 班涛
机构地区 华南师范大学
出处 《现代电子技术》 北大核心 2015年第15期117-119,122,共4页 Modern Electronics Technique
关键词 时域有限差分法 分裂步长 Split-Step方案 数值色散 FDTD method split step Split-Step scheme numerical dispersion
  • 相关文献

参考文献9

  • 1YEE K S. Numerical solution of initial boundary value prob.lems involving Maxwell′ s equations in isotropic media [J].IEEE Transactions on Antennas and Propagation, 1966, 14(3):302-307.
  • 2TAFLOVE A,HAGNESS S C. Computational electrodynamics:the finite.difference time.domain method [M]. 2nd ed. Boston:Artech House,2000.
  • 3徐利军,袁乃昌.高阶ADI-FDTD算法的数值色散分析[J].电子与信息学报,2005,27(10):1662-1665. 被引量:2
  • 4党涛,郑宏兴.关于二维ADI-FDTD方法的数值色散分析[J].中国民航学院学报,2004,22(2):42-46. 被引量:2
  • 5夏冬,党涛,郑宏兴.一维ADI-FDTD方法的数值色散分析[J].中国民航学院学报,2005,23(2):38-41. 被引量:1
  • 6LEE J,FORNBERG B. A split step approach for the 3.D Max.well′ s equations [J]. Journal of Computational and AppliedMathematics,2003,158(2):485-505.
  • 7SMITH G D. Numerical solution of partial differential equa.tions:finite difference methods [M]. 3rd ed. Oxford:OxfordUniversity Press,1986.
  • 8SMITH G D. Numerical solution of partial differential equa.tions [M]. Oxford:Oxford University Press,1978.
  • 9PEREDA J A,VIELVA L A,VEGAS A,et al. Analyzingthe stability of the FDTD technique by combining the VonNeumann method with the Routh.Hurwitz criterion [J]. IEEETransactions on Microwave Theory and Techniques,2001,49(2):377-381.

二级参考文献35

  • 1陈宝林.最优化理论与算法[M].北京:清华大学出版社,2002.397-431.
  • 2Taflove A.Computational Electrodynamics[M].Norwood,MA:Artech House, 1995.
  • 3Namiki T. A new FDTD algorithm based on alternating direction implicit method[J]. IEEE Trans Microwave Theory Tech,1999,47(10) :2003-2007.
  • 4Namiki T. 3-D ADI-FDTD method-unconditionally stable time-domain algorithm for solving full vector maxwell's equations[J].IEEE Trans Microwave Theory Tech,2000 , 48( 10 ) : 1743-1748.
  • 5Namiki T,ho K.Investigation of numerical errors of the two-dimensional ADI-FDTD Method[J].IEEE Trans Microwave Theory Tech, 2000,48 ( 11 ) : 1950- 1956.
  • 6Zhao A P.Analysis of the numerical dispersion of the 2-D alternating-direction implicit FDTD method[J]. IEEE Trons Microwave Theory Tech,2002,50( 4 ) : 1156-1164.
  • 7Zheng F,Chen Z. Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method [J]. IEEE Trans Microwave Theory Tech ,2001, 49( 5 ) : 1006-1009.
  • 8Guilin S,Christopher W T.Analysis and numerical experiments on the numerical dispersion of two-dimensional ADI-FDTD[.I].IEEE Antennas and Wireless Propagation Letters,2003,2(7):78-81.
  • 9Taflove A.Computational Electrodynamics[M].Norwood,MA:Artech House, 1995.
  • 10Namiki T. A new FDTD algorithm based on alternating direction implicit method[J]. IEEE Trans Microwave Theory Tech,1999,47(10) :2003-2007.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部