期刊文献+

一种多层混合的推荐模型研究 被引量:3

Research of a multi-layer hybrid recommend model
下载PDF
导出
摘要 在全面分析研究邻域模型和隐语义模型的基础上,针对现有推荐模型的优缺点,首先建立了一种融合邻域模型和隐语义模型的混合Top-N推荐模型,有效利用了用户反馈的信息,并全局考虑了用户与项目的潜在关系。然后综合考虑用户反馈信息、自身特征信息及潜在信息等因素,提出了一种基于SVD++上的全新混合Top-N推荐模型SHT(基于SVD++的混合Hybrid Top-N推荐模型缩写)。通过将特征信息融入模型,可准确地表现用户与项目的属性特征,实现依照用户的喜好与习惯高效、快捷和精准地推荐。实验结果表明,每一层的模型都能够在不同程度上提高推荐结果的精度。 Comprehensively analyzing the neighborhood model and the lingo model,we summarize the characteristics of existing technologies as well as the advantages and disadvantages of them.A hybrid Top-N model is established in order to effectively use the user feedback information and generally consider the potential relationship between users and items,by fusing the neighbor-hood model and lingo.With comprehensive consideration on the user feedback information,characteristic information,and poten-tial information,we propose a novel multi-tier hybrid Top-N model based on SVD++,called SHT (SVD++-based Hybrid Top-N Recommender Model).It is able to recommend the most accurate and effective items to user by their preferences and hab-its.The experimental results show that each layer of the model can improve the accuracy of recommendation results in different extents.
出处 《中国科技论文》 CAS 北大核心 2015年第14期1660-1664,共5页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20110201110064) 国家自然科学基金资助项目(61325013)
关键词 推荐模型 Top-N推荐 融合模型 奇异值分解 recommendation model Top-N model fused model SVD++
  • 相关文献

参考文献4

二级参考文献42

  • 1赵鹏,耿焕同,王清毅,蔡庆生.基于聚类和分类的个性化文章自动推荐系统的研究[J].南京大学学报(自然科学版),2006,42(5):512-518. 被引量:13
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 3ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
  • 4BENNET J,LANNING S.The netflixprize[EB/OL].[2009-06-20].http://www,netflixprize,com/assets/NetflixPrizeKDD_to_appear.pdf.
  • 5BELL R,KOREN Y.Improved neighborhood-based collaborative filtering[EB/OL].[2009-06-20].http://public,research,att.com/-volinsky/netflix/cfworkshop,pdf.
  • 6SARWA B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International Conference on World Wide Web.New York:ACM,2001:285-295.
  • 7WANG JUN,de VRIES A P,REIDERS M J T.Unifying user-based and item-based collaborative filtering approaches by similarity fusion[C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2006:501-508.
  • 8MA HAO,KING I,LYU M R.Effective missing data prediction for collaborative filtering[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2007:39-46.
  • 9SARWAR B M,KARYPIS G,KONSTAN J A,et al.Application of dimensianality reduction in recommender systems:A case study.[EB/OL].[2009-06-20].http://robotics.Stanford.edu/-ronnyk/WEBKDD2000/papers/sarwa.,pdf.
  • 10LINDEN G,SMITH B,YORK J.Amazon.corn recommendations:item-to-item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80.

共引文献104

同被引文献14

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部