期刊文献+

基于神经网络的空间站锂离子蓄电池电性能预测 被引量:2

Electrical Performance Prediction of Space Station Lithium-Ion Batteries Base on Nerual Network
下载PDF
导出
摘要 空间站锂离子蓄电池的电性能需要根据任务的变化,做出一定时间的电性能预测。构建了动态神经网络模型,对锂离子蓄电池地面充放电循环数据进行了筛选分类,用于开环和闭环动态神经网络的训练校正和测试,并比较了预测值和实测值,结果显示误差值可控制在1.42%和3.61%之间,此方法可应用于空间站智能电网工程仿真预测和管理实践中。 Predictions should be made for the electrical performance of Lithium-Ion batteries in the space station according to the changes of the tasks.A dynamic neural network model was established and the Lithium-Ion batteries charge and discharge cycles data were selected and categorized for the training, calibration and test of the open-loop and closed-loop dynamic neural network.The predic-ted and measured values were compared.The results showed that the error could be controlled be-tween 1.42%and 3.61%.This method may be used in the smart grid space station engineering simulation, prediction and management.
出处 《载人航天》 CSCD 2015年第4期367-372,共6页 Manned Spaceflight
关键词 神经网络 锂离子蓄电池 电性能 预测 nerual network Li-ion battery electrical performance prediction
  • 相关文献

参考文献6

  • 1Du J,Wang Y,Wen C. Li-ion battery SOC estimation usingparticle filter based on an equivalent circuit model[C] / / Con-trol and Automation (ICCA),2013 10th IEEE InternationalConference on. IEEE,2013: 580-585.
  • 2Hu J,Liu C,Li X. Fourier and Laplace transform used inpretreatment for neural network battery modeling[C] / / PowerElectronics and Motion Control Conference (IPEMC),20127th International. IEEE,2012,1: 172-176.
  • 3Nam O,Lee Jaemoon,LeeJaeho,et al. Li-ion battery SOCestimation method based on the reduced order extended Kal-man filtering[C] / /4th International Energy Conversion Engi-neering Conference and Exhibit (IECEC). 26-29 June 2006-San Diego,California.
  • 4Lingling Zhou-Lijing Yu,Ying Wang-et al. A Hybrid Modelfor Predicting the Prevalence of Schistosomiasis in Humans ofQianjiang City,China [J]. PLoS One. 2014,9 ( 8 ):e104875.
  • 5Jurado F,Hidalgo F P. Neural network control for dynamicvoltage restorer[J]. IEEE Transactions on Industrial Elec-tronics,2004,51(3): 727-729.
  • 6Zhou X,Zhang B,Zhao H,et al. State of charge estimationbased on improved Li-ion battery model using extended Kal-man filter [C] / / Industrial Electronics and Applications(ICIEA),2013 8th IEEE Conference on. IEEE,2013: 607-612.

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部