期刊文献+

陷窝强化对流换热机理数值模拟分析 被引量:1

Numerical mechanism analysis of heat transfer enhancement by dimple
下载PDF
导出
摘要 为了给后续优化陷窝设计提供参考,本文采用RANS数值模拟了底板布置典型深宽比为0.2的陷窝的两组光滑平板间充分发展对流换热流动的情况,分析了陷窝强化对流换热的机理。为验证数值模拟方法的可靠性,建立了与已有文献中的实验一致的模型,与实验结果对比,数值结果误差小于6%,验证了本文数值模拟方法的可靠性。本文通过此数值模拟方法研究表明:陷窝背风面动量输入小、流速低、对流换热弱、类龙卷风涡对壁面螺旋型焦点处对流换热最多减弱50%;陷窝尖后缘的高速绕流、冲击、边界层不连续发展和湍流强度增强等强化了对流换热;陷窝后缘处对流换热最大增强25%;尾流诱导达两倍陷窝表面直径距离的纵向涡对,由于纵向涡对在对称面上诱导向上的速度,对流换热减弱;由于纵向涡对两侧诱导向下的速度,对流换热较强;尾流区换热增强5%~25%。从整体来看,陷窝强化了对流换热。 To provide reference for dimple optimization design, the fully developed convective heat transfer between two planes, with a single dimple of depth to print diameter ratio of 0.2 placed on the below plane, is simulated with RANS in Fluent, to analyze heat transfer enhancement mechanism. Comparisons with experiment data show a good agreement; this proves the reliability of numerical method. It is found by simulation that: the convective heat transfer in leeward side of the dimple is decreased, because of where a low momentum region occurs. The lowest Nu/Nu0 is located at the focus point and is decreased by 50%. The sharp edge acceleration, impingement, boundary layer break and increased turbulence instability all act to enhance heat transfer, and the highest heat enhancement is in the dimple rear rim by 25%. Dimple wake induce counter rotate longitudinal vortex pairs, which induce upward velocity in middle and downward velocity in two sides, and enhance heat transfer more at two sides and less at middle. The dimple wake enhances heat transfer from 5% to 25%. In the average of the whole plane, the dimple enhances heat enhancement.
出处 《应用力学学报》 CAS CSCD 北大核心 2015年第3期353-358,1,共6页 Chinese Journal of Applied Mechanics
基金 国家重点基础研究发展计划(2015CB755800) 国家自然科学基金(11172240) 航空科学基金(2014ZA53002)
关键词 陷窝 强化对流换热 机理 数值模拟 dimple,convective heat transfer enhancement,mechanism,numerical simulation
  • 相关文献

参考文献15

  • 1Ligranri P M.Comparison of heat transfer augmentation techniques[J].AIAA Journal,2003,41(3):337-362.
  • 2Isaev S A.The effect of rearrangement of the vortex structure on heat transfer under conditions of increasing depth of a spherical dimple on the wall of a narrow channel[J].High Temperature,2003,41(2):229-232.
  • 3Isaev S A,Numerical simulation of vortex enhancement of heat transfer[J].High Temperature,2003,41(5):665-679.
  • 4Isaev S A.Influence of the Reynolds number and the spherical dimple depth on turbulent heat transfer and hydraulic loss in a narrow channel[J].International Journal of Heat and Mass Transfer,2010,53:178-197.
  • 5Wonl S Y,Ligranri P M.Numerical predictions of flow structure above a dimpled surface in a channel[J].Numerical Heat Transfer:Part A,2004,45(1):1-20.
  • 6Se Y W,Ligrani P M.Numerical predictions of flow structure and local Nusselt number ratios along and above dimpled surfaces with different dimple depths in a channel[J].Numerical Heat Transfer:Part A,2004,46(5):549-570.
  • 7Park J,Ligrani P M.Numerical predictions of heat transfer and fluid flow characteristics for seven different dimpled surfaces in a channel[J].Numerical Heat Transfer:Part A,2005,47(3):209-232.
  • 8Ligrani P M.Flow structure due to dimple depressions on a channel surface[J].Physics of Fluids,2001,13(11):3442-3451.
  • 9刘高文,张丽,郭涛.凹坑强化传热的研究进展回顾[J].航空动力学报,2007,22(11):1785-1791. 被引量:20
  • 10刘高文,赵鹏,张宗卫,刘涛.单凹坑壁面的瞬态红外传热测量与流场显示[J].推进技术,2009,30(1):41-45. 被引量:9

二级参考文献54

  • 1Mahmood G I, Hill M L, Nelson D L, et al. Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel. ASME J. Turbomach, 2001, 123(1): 115-123.
  • 2Majumdar D, Amon C H. Oscillatory Momentum Transport Mechanisms in Transitional Complex Geometry Flow. ASME J. Fluids Eng., 1997, 119(1): 29-35.
  • 3Kesarev V S, Kozlov A P. Convective Heat Transfer in Turbulized Flow Past a Hemispherical Cavity. Heat Transfer Res., 1994, 25(2): 15~160.
  • 4Terekhcv V I, Kalinina S V, Mshvidobadze Y M. Flow Structure and Heat Transfer on a Surface with a Unit Hole Depression. Russ. J. Eng. Thermophys., 1999, 11- 33.
  • 5Burgess N K, Oliveira M M, Ligrani P M. Nusselt Number Behavior on Deep Dimpled Surfaces with a Channel. ASME International Mechanical Engineering Congress & Exposition, 2002.
  • 6AFANASYEV V N, CHUDNOVSKY Y P, LEON- TIEV A I, et al. Turbulent flow friction and heat transfer characteristics for spherical cavities on a flat plate [J]. Experimental Thermal and Fluid Science, 1993,7 (1) :1-8.
  • 7GRIFFITH T S, LUAI A, HAN J. Heat transfer in rotating rectangular cooling channels (AR = 4) with dimples [J]. Journal of Turbomachinery, 2003, 125: 555-564.
  • 8MOHAMMAD A E, DANESH K T. Effect of Coriol- is forces in a rotating channel with dimples and protru- sions [J]. Journal of Heat and Fluid Flow, 2010, 31: 1-18.
  • 9MOHAMMAD A E, DANESH K T. Investigation of Coriolis forces effect of flow structure and heat trans- fer distribution in a rotating dimpled channel, ASME GT2010-22657 [R]. New York, USA: ASME, 2010.
  • 10CARLOS S, DOSEO P, EGIDIO M, et al. Optimizing of fin performance in a laminar channel flow through dimpled surfaces [J].Journal of Heat Transfer, 2009, 131: 1-9.

共引文献33

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部