期刊文献+

钢结构企业多项目调度的混沌粒子群算法优化研究

Research on Scheduling Problems of Steel Structure Enterprise Multi-project Based on Chaos Particle Swarm Optimization
下载PDF
导出
摘要 为解决多资源约束条件下的钢结构企业多项目调度问题,提出一种新的混沌粒子群优化算法调度方案。在原始公式的基础上结合局部模型和全局模型,将混沌搜索引入统一粒子群算法中,并在寻优过程中增加早熟处理机制,完善了算法对局部最优解的处理能力。提出了与混沌粒子群算法相切合的新的编解码方式。结合改进的算法对钢结构企业的多项目调度进行了仿真测试,验证了其满足多项目调度中精度与速度的要求。 To solve the steel structure enterprise multi-project scheduling problem which under the condition of multi- ple resource constraints,presented an improved chaotic particle swarm optimization algorithm for scheduling scheme. On the basis of the original formula,combined with local model and global model ,introduced chaos search into uni- fied particle swarm algorithm ,increased the early processing mechanism in the process of optimization ,which improved algorithm of local optimal solution processing capacity. A new decoding method is proposed which is very appropriate with chaotic particle swarm algorithm.Combined with improved algorithm,the steel structure enterprise multi-project scheduling simulation test has been made,the simulated test verified the precision and speed which meet the re- quirements of the multi-project scheduling.
出处 《自动化与仪表》 2015年第7期1-4,共4页 Automation & Instrumentation
基金 河北省科技支撑项目(13210307D) 天津市高等学校科技发展基金计划项目(20120814)
关键词 多项目 钢结构 调度 粒子群算法 混沌 multi-project steel structure scheduling particle swarm optimization algorithm chaos
  • 相关文献

参考文献6

  • 1Mingyue Feng,Hua Pan. A modified PSO algorithm based on cache replacement algofithm[J].Computational Intelligence and Security(CIS) ,IEEE Con.2014,558-562.
  • 2陈君兰,叶春明.柔性资源受限多项目调度的混沌粒子群算法研究[J].计算机应用研究,2013,30(1):117-120. 被引量:13
  • 3Roshanaei V,Ahmed Azab,E1Maraghy H.Mathematical modelling and a meta-heuristic for flexible job shop scheduling[J]. International Journal of Production Research,2013:6247-6274.
  • 4Kennedy J, Eberhart R C. Particle swarm optimization [ C ]// Proceeding of 1995 IEEE International Conference on Neural Networks ,New York, 1995 : 1942-1948.
  • 5Eberhart R C,Kennedy J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science,New York, 1995:39-43.
  • 6胥小波,郑康锋,李丹,武斌,杨义先.新的混沌粒子群优化算法[J].通信学报,2012,33(1):24-30. 被引量:127

二级参考文献28

  • 1高飞,童恒庆.基于改进粒子群优化算法的混沌系统参数估计方法[J].物理学报,2006,55(2):577-582. 被引量:47
  • 2罗荣桂,杨世宏,吴兵,何涛.柔性资源受限的多项目调度问题研究[J].武汉理工大学学报(社会科学版),2006,19(6):843-846. 被引量:5
  • 3刘士新.项目优化调度理论与方法[M].北京:机械工业出版社,2006.
  • 4KENNEDY J, EBERHART R C. Particle swarm optimization[A]. Proc of the First IEEE International Conference on Neural Networks[C]. Perth, Australia: IEEE Press, 1995. 1942-1948.
  • 5MODARES H, ALFI A, NAGHIBI-SISTANI M B. Parameter estimation of bilinear systems based on an adaptive particle swarm optimization[J]. Engineering Applications of Artificial Intelligence, 2010, 23(7) 1105-1111.
  • 6KARAKUZU C. Parameter tuning of fuzzy sliding mode controller using particle swarm optimization[J]. International Journal of Innovative Computing, Information and Control, 2010, 6(10):4755-4770.
  • 7KULKARNI R V, VENAYAGAMOORTHY G K. Bio-inspired algorithms for autonomous deployment and localization of sensor nodes[J] IEEE Transactions on Systems, Man, and Cybernetics, 2010, 40(6) 663-675.
  • 8ZHANG W, LIU J, NIU Y Q. Quantitative prediction of MHC-II binding affinity using particle swarm optimization[J]. Artificial Intelligence in Medicine,2010,50(2): 127-132.
  • 9GHEITANCHI S, ALI E STIPIDIS E. Particle swarm optimization for adaptive resource allocation in communication networks[J]. EURASIP Journal on Wireless Communications and Networking, 2010. 1-13.
  • 10BERGH E An Analysis of Particle Swarm Optimizers[D]. Department of Computer Science, University of Pretoria, South Africa, 2006 118-123.

共引文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部