期刊文献+

两整体基因交互作用的核典型相关分析

Detection for gene-based gene-gene interaction via kernel canonical correlation analysis
原文传递
导出
摘要 目的基于核典型相关分析,研究两整体基因的交互作用。方法通过统计模拟实验,在基于群体的病例对照研究中,运用核典型相关分析,构建FTO基因和PRDM16基因交互作用的KCCU统计量,并进行检验与评价。结果 KCCU统计量的检验效能与检验水准、样本含量、最小等位基因频率有关,且两整体基因交互作用量越大时,检验效能越高。当检验水准为0.05,基因频率高于0.05,交互作用OR>1.5,样本量>5000时,KCCU检验效能达0.8以上。结论在大样本高交互研究中,KCCU统计量是一种科学有效的检验整体基因间交互作用的统计推断方法。 Objective To detect the gene-based gene-gene interaction by kernel canonical correlation analysis. Methods Based on case-control study, statistical simulation studies were conducted to construct and test the KCCU statistic to evaluate gene-based gene-gene interaction of gene FTO and gene PRDM16 by kernel canonical correlation analysis. Results The power of KCCU statistic was related to significant level,sample size, minor allele frequency, and it was higher when the gene-gene interaction increased. The power arrived 0. 8 at the significant level of 0. 05 when the minor allele frequency was higher than 0. 05,the interaction odds ratio was higher than1. 5,and the sample size was greater than 5000. Conclusion KCCU statistic is a valid and powerful statistical inference method for detecting gene-based gene-gene interaction in the large sample analysis with high interaction.
出处 《卫生研究》 CAS CSCD 北大核心 2015年第4期666-670,共5页 Journal of Hygiene Research
基金 国家自然科学基金(No.81001280 81202277)
关键词 核典型相关分析 整体基因 交互作用 kernel canonical correlation analysis gene-based gene-gene interaction
  • 相关文献

参考文献14

  • 1ZHAO Jinying, JIN Li, XIONG Momiao. Test for interaction between two unlinked loci[ J]. Am J Hum Genet ,2006, 79 ( 5 ) : 831-845.
  • 2朱文圣,郭建华.基于单倍型的复杂疾病基因定位研究[J].数理统计与管理,2009,28(2):370-379. 被引量:3
  • 3PENG Qianqian, ZHAO Jinghua, XUE Fuzhong. A gene-based method for detecting gene-gene co- association in a case-control association study [ J ]. Eur J Hum Genet,2010, 18(5) : 582-587.
  • 4LARSON N B, SCHAID D J. A kernel regression approach to genc-gene interaction detection for case- control studies[ J]. Genet Epidemiol,2013, 37 (7) : 695 -703.
  • 5YUAN Zhongshang, GAO Qingsong, HE Yungang, et al. Detection for gene-gene co-association via kernel canonical correlation analysis [ J ]. BMC Genet,2012, 13: 83.
  • 6LARSON N B, JENKINS G D, LARSON M C, et al. Kernel canonical correlation analysis for assessing gene-gene interactions and application to ovarian cancer[J]. Eur J Hum Genet, 2014, 22 (1) : 126-131.
  • 7YUAN Zhongshang, LIU Hong, ZHANG Xiaoshuz , et al. From interaction to co-association -a Fisher r- to-z transformation-based simple statistic for real world genome-wide association study [ J]. Plos One, 2013, 8(7): 1-8.
  • 8LI Jing, CHEN Yixuan. Generating samples for association studies based on HapMap data[J]. BMC Bioinformatics,2008, 9 : 44-57.
  • 9李放歌,王志鹏,户国,李辉.全基因组关联研究中的交互作用研究现状[J].遗传,2011,33(9):901-910. 被引量:12
  • 10栾奕昭,左晓宇,刘轲,李谷,饶绍奇.基于单核苷酸多态性的基因互作分析方法学进展[J].遗传,2013,35(12):1331-1339. 被引量:6

二级参考文献41

  • 1ZHU Wensheng,GUO Jianhua.A likelihood-based method for haplotype association studies of case-control data with genotyping uncertainty[J].Science China Mathematics,2006,49(1):130-144. 被引量:2
  • 2朱文圣,郭建华.病例-对照研究中基因型不确定时单倍型关联分析的似然方法[J].中国科学(A辑),2006,36(4):403-417. 被引量:2
  • 3Cordell HJ. Detecting gene-gene interactions that underlie human diseases[J].Nature Reviews Genetics,2009,(06):392-404.
  • 4Moore JH. The ubiquitous nature of epistasis in determining susceptibility to common human diseases[J].Human Heredity,2003,(1-3):73-82.
  • 5Marchini J,Donnelly P,Cardon LR. Genome-wide strategies for detecting multiple loci that influence complex diseases[J].Nature genetics,2005,(04):413-417.doi:10.1038/ng1537.
  • 6Briggs FBS,Ramsay PP,Madden E,Norris JM Holers VM Mikuls TR Sokka T Seldin MF Gregersen PK Criswell LA Barcellos LF. Supervised machine learning and logistic regression identifies novel epistatic risk factors with PTPN22 for rheumatoid arthritis[J].Genes and Immunity,2010,(03):199-208.doi:10.1038/gene.2009.110.
  • 7Epstein MP,Satten GA. Inference on haplotype effects in case-control studies using unphased genotype data[J].American Journal of Hunan Genetics,2003,(06):1316-1329.
  • 8Purcell S,Neale B,Todd-Brown K,Thomas L Ferreira MA Bender D Maller J Sklar P de Bakker PI Daly MJ Sham PC. PLINK:a tool set for whole-genome association and population-based linkage analyses[J].American Journal of Hunan Genetics,2007,(03):559-575.
  • 9Wu XS,Dong H,Luo L,Zhu Y,Peng G,Reveille JD,Xiong MM. A novel statistic for genome-wide interaction analysis[J].PLoS Genetics,2010,(09):e1001131.
  • 10Ueki M,Cordell HJ. Improved statistics for genome-wide interaction analysis[J].PLoS Genetics,2012,(04):e1002625.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部