期刊文献+

粒子滤波跟踪中反馈式多模板更新策略研究

Feedback-Loop Multi-Template Updating Algorithm in Particle Filter Tracking
下载PDF
导出
摘要 在粒子滤波跟踪算法中,目标模板的更新精度是影响目标跟踪稳定性的重要因素.传统的模板更新策略大多以固定帧频或简易的更新判定等方式选取目标作为模板训练的样本,难以解决遮挡和目标外观突变等问题,并且不具备从错误模板中恢复的能力.针对该问题,在增量子空间框架下提出了反馈式多模板更新策略.首先引入稳态目标模板、暂态目标模板以及背景模板建立多模板模型,然后利用候选目标与多模板模型的相似度等信息,准确判定当前的跟踪状态及干扰产生的原因,并将其作为模板更新时机和方法的选择依据,形成闭环反馈的模板更新机制.实验结果表明,该方法能够有效克服遮挡和光照等复杂环境的影响,又能较好地适应目标外观的突然变化,比传统模板更新算法具有更好的鲁棒性. In particle filter tracking,the accuracy of template is essential to the tracking stability. Traditional updating strategy of template usually choose current target as the sample for training new template at a constant frequency or by simple judgment,which makes it impossible track target robustly under occlusion and abrupt target appearance changing,additionally hard to reject failure template for better one.To solve these problems,a feedback-loop multi-template updating algorithm is proposed based on incremental subspace learning.Firstly,steady target template, transient target template and background template are introduced to establish multi-template model.Secondly,those information such as the similarities of candidate target and multi-template, are applied to judge the present tracking state and the cause of interference,which are to choose the updating method and timing.Thus,a feedback-loop updating mechanism of target template is built.Experimental results indicate that such an updating strategy can overcome the influence of complex environment such as occlusion and illumination,as well as be adaptive to the appearance changes and is more robust than the traditional template updating strategy.
出处 《军械工程学院学报》 2015年第3期44-51,共8页 Journal of Ordnance Engineering College
基金 军队科研计划项目
关键词 目标跟踪 粒子滤波 多模板模型 跟踪状态判决 反馈式模板更新 target tracking particle filter Multi-template tracking state judgment feedback-loop template updating
  • 相关文献

参考文献19

二级参考文献143

  • 1程建,杨杰.一种基于均值移位的红外目标跟踪新方法[J].红外与毫米波学报,2005,24(3):231-235. 被引量:42
  • 2程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 3孙中森,孙俊喜,宋建中,乔双.一种抗遮挡的运动目标跟踪算法[J].光学精密工程,2007,15(2):267-271. 被引量:30
  • 4周妍,胡波,张建秋.基于粒子滤波器和风险决策跟踪遮挡目标的方法[J].电子学报,2007,35(2):350-353. 被引量:12
  • 5vander MerweR, de Freitas J F G, Doucet A, et al. The un scented particle filter [R]. Technical Report CUED/F-INFENG/TR 380, Cambridge University Engineering Department , 2000.
  • 6Nguyen H T, Smeulders Worring M, Van den Boomagaard R. Occlusion robust adaptive template tracking [J]. IEEE Int. Conf. on Computer Vision, 2004,26 (8): 1099 - 1104.
  • 7Ross D, Lim J, Yang M-H. Adaptive probabilistie visual tracking with incremental subspace update[C]//Proc European Conf on Computer Vision, Pranue, 2004, 23(2) :470 - 482.
  • 8Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[J]. Computer Vision and Pattern Recognition, 1999,2 : 246 - 252.
  • 9KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection[J]. The 2rid European Workshop on Advanced Video Based Surveillance System, A VBS01, 2001.
  • 10Elgammal A, Harwood D, Davis L S. Non-parametric back-ground model for background subtraction[C]// In Proc. 6th ECCV, 2000,2:751-767.

共引文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部