期刊文献+

结构方程模型常用拟合指数检验的实质 被引量:56

The Essence of Testing Structural Equation Models Using Popular Fit Indexes
下载PDF
导出
摘要 拟合指数检验是评价结构方程模型(SEM)的重要环节。从协方差结构分析的角度将SEM与传统的回归模型比较,容易理解为什么SEM需要拟合指数。揭示了目前几种流行的拟合指数检验的实质:基于卡方的绝对拟合指数(如RMSEA)检验的实质是重新设定卡方检验的显著性水平(不同于通常的.05),相对拟合指数(如NNFI和CFI)检验的实质是基于虚模型设定均方(卡方与自由度之比)降低到的比例;在NNFI大于临界值后,报告和检验CFI是不必要的。根据研究结果提出了一些方便实用的拟合检验建议。 Structural equation modeling is an important method for analyzing multivariate data in the studies of psychology, behavior, management, marketing, etc. The usual regression models are simple cases of structural equation models. Compared with regression models from the view of covariance structural analysis, structural equation models are easier to be understood why they need model-fit testing by using goodness of fit indexes. We introduce the source of fit indexes, methods of model-fit testing and criteria of fit indexes in structural equation models. Our main purpose is to reveal the essence of model-fit testing using some popular fit-indices, including NNFI (Non-normed Fit Index), CFI (Comparative Fit Index), Mc (Measure of Centrality), and RMSEA (Root Mean Square Error of Approximation). It is shown that the criterion of an absolute fit index based on chi-square (e.g., RMSEA, Mc) is to set significance levels (might be much lower than traditional level of 0.05) for chi-square test. According to these comparable significance levels we could know which criterion is harsher to accept the theoretical model. When the degree of freedom is not larger than 32, the theoretical model will be accepted under the criteria of Mc 〉 0.9 if the model is accepted under the criteria of RMSEA 〈 0.08. When the degree of freedom is not less than 33, conversely, the theoretical model will be accepted under the criteria of RMSEA 〈 0.08 if the model is accepted under the criteria of Mc 〉 0.9. Thus RMSEA 〈 0.08 and Mc 〉 0.9 are compensatory criteria for model-fit testing in structural equation modeling. It is also shown that the criterion of a relative fit index is to set a proportion of reduced mean square (the ratio of chi-square to its degree of freedom) from the null model to the theoretical model. The null model is the worst model-fit because all indicators in the null model are set to be uncorrelated each other. Thus, the null model has the largest chi-square and the largest degree of freedom. For any given cutoff value, if the theoretical model is accepted under the criterion of NNFI, the model will be accepted definitively under the criterion of CFI. In other words, CFI is always not less than NNFI. Therefore, the criterion of CFI is covered by the criterion of NNFI. It is recommended that applied researchers should report and test at least one absolute fit index and one relative fit index. For absolute fit index, both Mc (cutoff value 0.9) and RMSEA Mc (cutoff value 0.08) are recommended. For relative fit index, however, only NNFI (cutoff value 0.9) is recommended. In addition, SRMR (Standardized Root Mean square Residual, cutoff value 0.08) is deserved of reference because it is only one that is not defined based on chi-square in the popular fit indexes.
作者 温涵 梁韵斯
出处 《心理科学》 CSSCI CSCD 北大核心 2015年第4期987-994,共8页 Journal of Psychological Science
基金 国家自然科学基金项目(31400909)的资助
关键词 结构方程模型 拟合指数 拟合检验 卡方 均方 临界值 structural equation model fit index fit testing chi-square mean square cutoff value
  • 相关文献

参考文献21

  • 1温忠麟,刘红云,侯杰泰.(2012).溺节效应和中介效应分析.北京:教育科学出版社.
  • 2温忠麟,侯杰泰.检验的临界值:真伪差距多大才能辨别?--评《不同条件下拟合指数的表现及临界值的选择》[J].心理学报,2008,40(1):119-124. 被引量:30
  • 3温忠麟,侯杰泰,马什赫伯特.结构方程模型检验:拟合指数与卡方准则[J].心理学报,2004,36(2):186-194. 被引量:1281
  • 4Bentler, P. M. (1990). Comparative fit indices in structural models. Psychological Bulletln, 107, 238-246.
  • 5Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588-606.
  • 6Bollen, K. A. (1989). Structural Equations with Latent Variables. New York: Willey.
  • 7Fan, X., & Sivo, S. A. (2007). Sensitivity of fit indices to model misspecitication and model types. Mulgvmlate Behavioral Research, 42, 509-529.
  • 8Henseler, J., & Sarstedt, M. (2013). Goodness-of-fit indices for partial least squares path modeling. Computational Statistics, 28, 565-580.
  • 9Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424-453.
  • 10Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indices in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.

二级参考文献38

  • 1[1]Tucker L R, Lewis C. The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 1973, 38: 1~10
  • 2[2]Steiger J H, Lind J M. Statistically-based tests for the number of common factors. Paper presented at the Psychometrika Society Meeting, IowaCity, May, 1980
  • 3[3]Bentler P M, Bonett D G. Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 1980, 88: 588~ 606
  • 4[4]Bentler P M. Comparative fit indices in structural models. Psychological Bulletin,1990, 107: 238~ 246
  • 5[5]McDonald R P, Marsh H W. Choosing a multivariate model: Noncentrality and goodness-of-fit. Psychological Bulletin, 1990,107: 247~ 255
  • 6[6]Marsh H W, Balla J R, Hau K T. An evaluation of incremental fit indices: A clarification of mathematical and empirical processes. In: Marcoulides G A, Schumacker R E eds. Advanced structural equation modeling techniques. Hillsdale, NJ: Erlbaum, 1996. 315~ 353
  • 7[7]Browne M W, Cudeck R. Alternative ways of assessing model fit. In: Bollen K A, Long J S eds. Testing Structural Equation Models. Newbury Park, CA: Sage, 1993. 136~ 162
  • 8[8]Joreskog K G, Srbom D. LISREL 8: Structural equation modeling with the SIMPLIS command language. Chicago: Scientific Software International, 1993
  • 9[9]Hu L, Bentler P M. Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 1998, 3: 424~ 453
  • 10[10]Hu L, Bentler P M. Cutoff criteria for fit indices in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 1999, 6: 1~ 55

共引文献1298

同被引文献1013

引证文献56

二级引证文献322

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部