期刊文献+

浒苔生物炭对水中萘的吸附作用 被引量:5

Sorption of naphthalene in water by biochar derived from Enteromorpha prolifera
原文传递
导出
摘要 近年浒苔的爆发式生长给中国一些沿海城市海滨环境和景观造成很大影响,而妥善处置清理后的浒苔至关重要。本研究将浒苔在不同温度下碳化制备成生物炭,用于吸附处理水中的萘。结果发现,浒苔生物质及150℃碳化的浒苔生物炭对萘的吸附以弱的分配作用为主,吸附等温曲线为线性;250、350℃碳化后,吸附能力显著增强,表面吸附和分配作用均有贡献;随着碳化温度进一步升高,吸附能力明显减弱,500℃碳化后吸附作用仅由表面吸附贡献;而700℃碳化时,浒苔中的碳质几乎被完全氧化分解,仅残留部分矿物组分,对萘几乎没有吸附能力。 The rapid growth of the Enteromorpha prolifera (EP) in beaches of some coastal city has caused serious environmental problems. The proper disposal of large quantity of waste EP is an important issue. In this paper, the biomass of the EP is thermally pyrolyzed into a biochar and its sorption characteristics with respect to the naphthalene in water are studied. It is shown that the sorption of the naphthalene by the EP biomass and the lower temperature (150℃) derived EP biochar is governed by a weak partition process, while the biochar derived from the EP at the higher temperatures of 250 and 350% exhibits much better sorption capacity than the others, and their sorption is contributed by both the adsorption and the partition. However, the EP biochar derived at 500℃ has a weaker sorption capacity than at 250 and 350%, and the EP biochar derived at 700% has almost no carbon content except for some minerals, and exhibits almost no sorption capacity with respect to the naphthalene.
出处 《科技导报》 CAS CSCD 北大核心 2015年第14期78-81,共4页 Science & Technology Review
基金 国家自然科学基金项目(21307122) 浙江省自然科学基金项目(LQ12B07003)
关键词 浒苔 生物炭 吸附 表面吸附 分配作用 Enteromorpha prolifera biochar sorption naphthalene adsorption partition
  • 相关文献

参考文献18

  • 1AInnad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for con- taminant management in soil and water: A review[J]. Chemospherc, 2014, 99: 19-33.
  • 2Lehmann J, Joesph S. Biochar for environmental management: Science anti technology[M], l,ondon: Earthscan, 2009.
  • 3Chen Z M, Chen B L, Chiou C T. Fast and slow rates of naphthalene sorp- tion to biochars produced at different temperatures[J]. Environmental Science and Technology, 2012, 46(20): 11104-11111.
  • 4Becsley L, Moreno-Jim6nez E, Gomez-Eyles J L. Effects of biochar and gr~enwaste compost amcmlments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environmental Polhltion, 2010, 158(6): 2282-2287.
  • 5Jones D 1., Edwards-Jones G, Murphy D V. Biochar mediated alterations in herbicide breakdown and leaching in soil[J]. Soil Biology & Biochemistry.2011,43(4): 804-813.
  • 6Chen B, Zhou D, Zhu L. Transitional adsorp!ion and parlilion of nnnpolar and polar aromatic contaminants by biochars of pine needles wiih dit'li'renl pyrolytic temperatures[J]. Environmental Science and Technology, 2008, 42(14): 5137-5143.
  • 7Chun Y, Sheng G Y, Chiou C T, et al. Compositions and snrptive tm~perties of crop l~sidue-derived chars[J]. Environmental Science and Technology, 2004, 38(17): 4649-4655.
  • 8Uchimiya M, Chang S+ Klasson K T. Screening biochat~ fi~r heavy metal retention in soil: Role of oxygen functional gronpslJI. Journal o1' Hazardous Materials, 2011,190: 432-441.
  • 9Keiluweit M, Nieo P S, Johnson M G, et al. Dynamic molecular slruettne of plant biomass-derived black carbon (bioehar)[J]. Environmental Science and Technology, 2010, 44(4): 1247-1253.
  • 10Kong H, He J, Gau Y, et al. Cosorption of id~enanlhreoe and m,:~rcary (ll) from aqueous solution by soybean stalk-based hiochar[J] ,lunrnal of Agricultural Food and Chemistry, 201 l, 59(22): 12116-12123.

二级参考文献27

  • 1毕于云.2010.秸秆资源评价与利用研究[D].北京:中国农业大学.
  • 2Cao X D, Ma L N, Gao B, et al. 2009. Dairy-manure derived biochar effectively sorbs lead and atrazine [ J]. Environmental Science and Technology, 43(9) : 3285-3291.
  • 3Cao X D, Ma L N, Liang Y, et al. 2011. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar [ J]. Environmental Science and Technology, 45 : 4884-4889.
  • 4Chen B L, Zhou D D, Zhu L Z. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures [ J ]. Environmental Science and Technology, 42(14) : 5137-5143.
  • 5Chen B L, Chen Z M. 2009. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures [ J ]. Chemosphere, 76:127-133.
  • 6Chen B L, Yuan M X. 2011. Enhanced sorption of polyeyclic aromatic hydrocarbons by soil amended with bioehar [ J ]. Journal of Soils and Sediments, 11 : 62-71.
  • 7Chen B L, Yuan M X, Liu H. 2011. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent [ J]. Journal of Hazardous Materials, 188:436-442.
  • 8Jones D L, Edwards-Jones G, Murphy D V. 2011. Biochar mediated alterations in herbicide breakdown and leaching in soil [ J ]. Soil Biology & Biochemistry, 43:804-813.
  • 9Keiluweit M, Nico P S, Johnson M G, et al. 2010. Dynamic molecular structure of plant biomass-derived black carbon (Biochar) [ J ]. Environmental Science & Technology, 44:1247-1253.
  • 10Lehmann J. 2007. A handful of carbon [ J]. Nature, 447 : 143-144.

共引文献127

同被引文献81

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部