摘要
根据微网与主网之间不同的交互方式制定2种不同的优化策略,建立以微网经济成本和环境效益为目标的优化调度模型,采用蜂群搜索策略的改进量子粒子群(BQPSO)算法进行求解。该算法具有较强的全局搜索能力,能够提高计算精度,避免陷入局部最优解,有效改善多目标优化调度的Pareto前沿分布特性。最后,以典型的微型燃气轮机、柴油发电机和燃料电池组成的微网系统为例,验证了所建模型和所提方法的有效性。
Two different optimization strategies were formulated according to different interaction ways between micro-grid and main grid,and the optimization dispatch model with the goal of economic cost and environmental benefits for micro-grid was established in this paper.An improved quantum-behaved particle swarm algorithm(BQPSO)based on the bee colony search strategy was used to solved the model.This algorithm has strong global searching ability.It can improve the calculation accuracy,and avoid falling into the local optimal solution and effectively improve the Pareto front distribution characteristics of the multi-objective optimization dispatch.Finally,the model effectiveness and the proposed method were verified with the micro network system consisting of the typical micro gas turbine,the diesel generator and the fuel cell as an example.
出处
《电力科学与技术学报》
CAS
北大核心
2015年第2期41-47,共7页
Journal of Electric Power Science And Technology
关键词
微网
优化调度
改进量子粒子群算法
Pareto前沿分布特性
micro-grid
optimal dispatching
improved quantum-behaved particle swarm optimization(BQPSO)
Pareto front distribution characteristics