期刊文献+

石墨烯/炭气凝胶的制备及其结构与性能研究 被引量:5

Preparation and Electrochemical Performance of Graphene/Carbon Aerogels
下载PDF
导出
摘要 以间苯二酚(R)和甲醛(F)为炭前驱体原料,通过溶胶–凝胶法制备石墨烯/炭气凝胶复合材料。采用XRD、Raman、SEM和N2吸附/脱附等对样品进行结构表征。结果表明:石墨烯为R和F的聚合提供形核场所,R和F首先在氧化石墨烯(GO)表面聚合,随着RF含量的增加,复合炭气凝胶(RF)结构从石墨烯薄片层为骨架的三维网络,经RF基炭球包裹于石墨烯的网络结构,最终转变为球形团簇交联的三维网络。石墨烯/炭气凝胶复合材料的比表面积随着RF的增加先增大后减小。当GO与RF质量比为1︰100时,GO/RF-100用作超级电容器电极材料,在6 mol/L KOH电解液中的比电容达169 F/g,具有较好的电容特性。 Graphene/carbon aerogels (RF) were preparedvia a Sol-Gel process in graphene oxide (GO) solution using resorcinol (R) and formaldehyde (F) as carbon precursor. The structure, morphology and pore-size distribution of the samples were characterized by XRD, Raman spectrum, SEM and N2 adsorption desorption method. The results indicate that graphene can act as nucleation and growth sites for carbon aerogels. At low mass loading level of RF, a macroporous structure is formed, and the structure of carbon aerogels originates from sheet-structure of GO precursor. With increasing the mass of RF, RF carbon aerogel results in dispersed and thickened carbon platelets. At high mass loading levels, carbon spheres are obtained. Meanwhile, with increasing the mass of RF, the specific surface area of the aerogel increases firstly and then decreases, reaching the maximum value of 841 m^2/g whenw(GO)/w(RF)=1︰50. Electrochemical measurements show that GO/RF-100 has the highest specific capacitance of 169 F/g in 6 mol/L KOH aqueous electrolytes.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2015年第7期757-762,共6页 Journal of Inorganic Materials
基金 国家自然科学基金(51402101,51472083) 湖南省自然科学基金基金(14JJ3059) 湖南大学“青年教师成长计划”(531107040185)~~
关键词 氧化石墨烯 炭气凝胶 孔结构 电容性能 graphene oxide carbon aerogel pore structure electrochemical performance
  • 相关文献

参考文献1

二级参考文献12

  • 1黄庆华,王先友,汪形艳,李俊,黄伟国.超级电容器电极材料——MnO_2的电化学制备及其性能[J].电源技术,2005,29(7):470-473. 被引量:19
  • 2ANDREW B.Ultracapacitor:why,how,and where is the technology[J].J Power Sources,2000,91:37.
  • 3CONWAY B E.The role and utilization of pseudocapacitance for energy storage by supercapacitors[J].Journal of Power Sources,1997,66:1-14.
  • 4BECKER H L.Electric double layer capacitor[p].USP:2800616,1957.
  • 5MAYER S T,PEKALA A R,Kaschintter W.The aerocapacitor:An electrochemical double-layer energy-storage device[J].J Electrochem Soc,1993,140(2):446-451.
  • 6WEI Y Z,FANG B,IWASA S,et al.A novel electrode material for electric double-layer capacitors[J].Journal of Power Sources,2005,141:386-391.
  • 7WU D C,FUR W,MILDRED S D,et al.Preparation of low-density carbon aerogels by ambient pressure drying[J].Carbon,2004,42:2 033-2 039.
  • 8KIM S J,HWANG S W,HYUN S H.Preparation of carbon aerogel electodes for supercapacitor and their electrochemical characteristics[J].Journal of Materials Science,2005,40:725-731.
  • 9ZHANG S Q,HUANG C G,ZHOU Z Y.Investigation of the microwave absorbing properties of carbon aerogels[J].Materials Science and Engineering,2002,90:38-41.
  • 10WIENER M,REICHENAUER G,SCHERB T,et al.Accelerating the synthesis of carbon aerogel precursors[J].Journal of Non-Crystalline Solids,2004,350:126-130.

共引文献18

同被引文献117

  • 1ZHAO M, ZHANG Q, HUANG J, et al. Towards high purity graphene/single-walled carbon nanotube hybrids with improved electrochemical capacitive performance[J]. Carbon, 2013, 54: 403-411.
  • 2CAO Z Y,WEI B Q. A perspective: carbon nanotube macro-films for energy storage[J]. Energy & Environmental Science, 2013, 6(11): 3183-3201.
  • 3NIU H, ZHOU D, YANG X, et al. Towards three-dimensional hierarchical ZnO nanofiber@Ni(OH)2 nanoflake core-shell heterostructures for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(36): 18413-18421.
  • 4WANG G P, ZHANG L, ZHANG J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.
  • 5CHABI S, PENG C, HU D, et al. Ideal three-dimensional electrode structures for electrochemical energy storage[J]. Advanced Materials, 2014, 26(15): 2440-2445.
  • 6NARDECCHIA S, CARRIAZO D, FERRER M L, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications[J]. Chemical Society Reviews, 2013, 42(2): 794-830.
  • 7MAYOROV A S,GORBACHEV R V, MOROZOV S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano letters, 2011, 11(6): 2396-2399.
  • 8MOSER J, BARREIRO A, BACHTOLD A. Current-induced cleaning of graphene[J]. Applied Physics Letters, 2007, 91(16): 163513.
  • 9BUNCH J S, VERBRIDGE S S, ALDEN J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462.
  • 10BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(8): 569-581.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部