期刊文献+

基于小波-能量模式的回转支承故障诊断方法研究与应用 被引量:5

Slewing bearing analysis on fault diagnosis based on wavelet and energy fault mode and its application
下载PDF
导出
摘要 回转支承机械结构和工作条件特殊,导致其故障机制复杂,传统的信号分析方法难以对其进行有效的故障诊断。提出了一种基于小波分解与能量谱相结合的回转支承故障诊断方法。利用小波多尺度、多分辨率的特性,对回转支承振动信号进行多尺度分解;根据回转支承低频故障特性,对小波分解后的低频区进行频谱分析,再结合各尺度频带能量谱进行回转支承故障诊断。通过对回转支承加速寿命试验中各阶段数据分析表明,该方法能够有效、准确地诊断出回转支承故障模式,相比单一的小波频谱分析诊断精度更高、可靠性更好,具有一定的工程实用价值。 Traditional signal process method was difficult to be efficiently applied to the slewing bearing fault diagnosis due to the complex failure mechanism caused by the particular mechanical structure and special working conditions. A diagnosis method based on wavelet decomposition and energy spectrum was proposed. A multi-scale and multi-resolution attributes of wavelet were used to decompose the vibration of slewing bearing into different frequency bands. According to the low frequency characteristic of slewing bearing,the specific low frequency band spectrum was selected to analyze and combined with the each scale energy spectrum by wavelet decomposition to diagnose. Through accelerating life experiments,the vibration signal of each process stage of slewing bearing was analyzed,and results showed that the method could be used more effectively and accurately for diagnose the slewing bearing failure mode than the single wavelet spectrum analysis. It had potential engineering applications.
出处 《南京工业大学学报(自然科学版)》 CAS 北大核心 2015年第4期134-140,共7页 Journal of Nanjing Tech University(Natural Science Edition)
基金 国家自然科学基金(51375222)
关键词 回转支承 小波分析 频谱分析 小波能量谱 故障诊断 slewing bearing wavelet analysis spectrum analysis wavelet power spectrum fault diagnosis
  • 相关文献

参考文献7

二级参考文献68

共引文献83

同被引文献30

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部