期刊文献+

基于统计模式识别的压力管道损伤检测 被引量:1

Damage detection of pressure pipe based on statistical pattern recognition theory
下载PDF
导出
摘要 基于统计模式识别理论,采用AMRA时序分析方法,通过长自回归模型计算残差法和最小二乘法的结合来估计模型参数,从而建立了系统模型。运用均值控制图的方法对压力管道的振动信息特征进行提取、选择,从而有效地判别压力管道的无损与损伤问题。数值模拟结果表明,基于统计模式识别的均值控制图的结构异常检验方法,能够准确诊断检测结构的损伤状态,而且对于损伤程度和损伤位置都有很强的敏感性。 Based on the statistical patt ern recognition theory, t he AMRA tim ing analysis method combined w ith the long autore-gressive model residual method and the least squares method w ere used to estimate the model parameters and then to develop the system model. The mean cont rol chart method w as used to extract and select the vibration information and feature of the pressure pipe, therefore the damage of the pressure pipe can be ident ified effectively. T he simulation result s show ed that struc-tural abnormality test method of the mean control chart, w hich is based on the statist ical pattern recognition theory, can diag-nose the structural damage accurately, and is sensitive to the damage degree and location.
出处 《南水北调与水利科技》 CAS CSCD 北大核心 2015年第4期813-816,共4页 South-to-North Water Transfers and Water Science & Technology
基金 甘肃省科技支撑计划研究项目(1304FKA055) 甘肃省高等学校科研项目(2013B-124) 国家电网甘肃电力科技项目(5227011600D9)
关键词 统计模型 AMRA时序分析 特征值 均值控制图 损伤检测 statistical model AMRA timing analysis eigen value mean control chart damage detection
  • 相关文献

参考文献13

二级参考文献59

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:186
  • 2Sohn H,Farrar C R,Hunter N F,et al.Structural health monitoring using statistical pattern recognition techniques[J].Journal of Structural and Engineering,2000,123(11):1336-1356.
  • 3Kullaa J.Damage detection of the z24 bridge using control charts[J].Mechanical Systems and Signal Processing,2003,17(1):163-170.
  • 4Sohn H,Worden K,Farrar C R.Statistical damage classification under changing environmental and operational conditions[J].Journal of Intelligent Material Systems and Structures,2003,13 (9):561-574.
  • 5Nair K K,Kiremidjian A S,Law K H.Time series-based damage detection and localization algorithm with application to the ASCE benchmark structures[J].Journal of Sound and Vibration,2006,291(1-2):349-368.
  • 6Fugate M L,Sohn H,Farrar C R.Vibration-based damage detection using statistical process control[J].Mechanical Systems and Signal Processing,2001,15(4):707-721.
  • 7Park G,Rutherford A C,Sohn H,et al.An outlier analysis framework for impedance-based structural health monitoring[J].Journal of Sound and Vibration,2005,286(1-2):229-250.
  • 8Brownjohn J M W,Moyo P,Omenzetter P,et al.Lessons from monitoring the performance of highway bridge[J].Structural Control and Health Monitoring,2005,12(3/4):227-244.
  • 9Farrar C R,Doebling S W,Nix D A.Vibration-based structural damage identification[J].Philosophical Transactions of the Royal Society of London:Series A,2001,359(1778):131-149.
  • 10Sohn H,Farrar C R.Damage diagnosis using time series analysis of vibration signals[J].Journal of Smart Materials and Structures,2001,10(3):446-451.

共引文献43

同被引文献14

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部