期刊文献+

南极假丝酵母脂肪酶B催化3-(4-氟苯基)戊二酸酐不对称醇解

Enantioselective alcoholysis of 3-(4-fluorophenyl) glutaric anhydride catalyzed by Candida antarctica lipase B
下载PDF
导出
摘要 采用分子模拟技术,研究了南极假丝酵母脂肪酶B(Candida antarctica lipase B,CALB)催化3-(4-氟苯基)戊二酸酐(3-FGA)不对称醇解的分子机制。首先借助力场修改的Autodock 4.2软件将过渡态底物与CALB进行对接,根据对接自由能差异解析了CALB催化3-FGA与不同醇反应的立体选择性差异,得到的S型底物结合能小于R型底物;其次,基于扭转角机制分析发现,S型底物扭转角小于R型底物,从分子水平上揭示了CALB对S型底物选择性优于R型底物的机制。 We studied enantioselective alcoholysis of 3-( 4-fluorophenyl) glutaric anhydride( 3-FGA) by Candida antarctica lipase B( CALB) through molecular simulation technology. The transition state substrates were docked with CALB by using Autodock 4. 2 whose force file was modified. The enantioselective difference of the alcoholysis of 3-FGA with various alcohols catalyzed by CALB was proved by the differences of binding energy. The binding energy of S-enantiomer was smaller than Renantiomer. Furthermore,we also found that the torsional angle of S-enantiomer was smaller than Renantiomer through analyzing the torsional angle mechanism, CALB showed an S-enantiomer enantiopreference from the molecular level.
出处 《生物加工过程》 CAS 2015年第4期58-62,共5页 Chinese Journal of Bioprocess Engineering
基金 国家高技术研究发展计划(863计划)(2011AA02A209)
关键词 南极假丝酵母 脂肪酶 3-(4-氟苯基)戊二酸酐 分子对接 分子动力学 对映选择性 Candida antarctica lipase (3-(4-fluorophenyl) glutaric anhydride molecular docking molecular dynamics enantioselectivity
  • 相关文献

参考文献14

  • 1Liu L T, Hong P C, Huang H L, et al. Asymmetric syntheses of trans-3, 4-disubstituted 2-piperidinones and piperidines [ J ]. Tetrahedron : Asymmetry, 2001,12 ( 3 ) : 419-426.
  • 2Risi C D, Fanton G, Pollini G P, et al. Recent advances in the stereoselective synthesis of trans-3, 4-disubsfituted-piperidines: applications to ( - ) -paroxetiue [ J ]. Tetrahedron : Asymmetry, 2008,19(2) :131-155.
  • 3Huang X J, Broadbent S, Dvorak C, et al. Pilot-plant preparation of 3,4-dihydropyridin-2-one derivatives, the core structures of P2X7 receptor antagonists [ J]. Org Process Res Dev, 2010, 14 (3) :612-616.
  • 4Yu M S,Lantos I,Peng Z Q,et al.Asymmetric synthesis of (-)- paroxetine using PLE hydrolysis [J].Tetrahedrou Lett, 2000,41 (30) :5647-5651.
  • 5Huang X J, Zhu J, Broadbent S.The first asymmetric synthesis of a 4-arylsubstituted 5-carboxy-3, 4-dihydropyridin-2-one derivative [ J] .Tetrahedron Lett,2010,51 (12) : 1554-1557.
  • 6Fryszkowska A, Komar M, Koszelewski D, et al. Studies on enzymatic synthesis of chiral non-racemic 3-arylglutaric acid monoesters[J].Tetrahedron: Asymmetry, 2006,17 ( 6 ) : 961-966.
  • 7Liu Weiming, Hu Yi, Zhang Yang, et al. Enzymatic desymmetHzation of 3- (4-fluorophenyl) glutaric anhydride through enantioselective alcoholysis in organic solvents [J ]. Biotechnol Bioeng,2014,19(3) :449-455.
  • 8Koike D A, Mihalick B C. Web-based technologies for teaching and using molecular simulation [ J ]. Fluid Phase Equilib, 2002,194-197:327-335.
  • 9Bartsch S, Kourist R, Bornscheuer U T. Complete inversion of enantioselectivity towards acetylated tertiary alcohols by a double mutant of a Bacillus subtilis esterase [ J ]. Angew Chem Int Ed, 2008,47(8) : 1508-1511.
  • 10林明,江凌,胡燚,张洋,刘维明.基于分子对接的洋葱假单胞菌脂肪酶催化制备R-N-(2-甲基-6-乙基苯基)丙氨酸的分子机制[J].生物加工过程,2013,11(4):49-54. 被引量:1

二级参考文献18

  • 1Tafi A, Manetti F, Botta M, et al. A drop of enantioselectivity in the Pseudomonas cepacia lipase-catalyzed ester hydrolysis is influenced by the chain length of the fatty acid [ J ]. Tetrahedron Asymmetry, 2004,15 ( 15 ) : 2345 -2350.
  • 2Taft A,van Almsick A, Corelli F, et al. Computer simulations of enantioselective ester hydrolyses catalyzed by Pseudomonas cepacia lipase [ J]. J Org Chem,2000,65 ( 12 ) :3659-3665.
  • 3Lattes A, Oliveros E, Riviere M, et al. Photochemical and thermal rearrangement of oxaziridines : experimental evidence in support of the stereoelectronie control theory[ J]. J Am Chem Soc, 1982,104 (14) :3929-3934.
  • 4Ema T, Kobayashi J, Maeno S, et al. Origin of the enantioselectivity of lipases explained by a stereo-sensing mechanism operative at the transition state [ J ]. Bull Chem Soc Jpn, 1998,71 (2) :443-453.
  • 5Ema T, Okada, R, Fukumoto M, et al. Transition-state model for subtilisin-catalyzed transesterifications of secondary alcohols [ J ]. Tetrahedron Lett, 1999,40 (23) :4367-4370.
  • 6Kazlauskas R J. Molecular modeling and biocatalysis : explanations, predictions, limitations, and opportunities [ J ]. Curt Opin Chem Biol,2000,4( 1 ) :81-88.
  • 7Luic M, Stefanic Z, Ceilinger I, et al. Combined X-ray diffraction and QM/MM study of the Burkholderia cepacia lipase-catalyzed secondary alcohol esterification [ J ]. J Phys Chem B, 2008,112(16) :4876-4883.
  • 8Bartsch S, Kourist R, Boruscheuer U T. Complete inversion of enantioselectivity towards acetylated tertiary alcohols by a double mutant of a Bacillus subtilis esterase [ J ]. Angew Chem Int Ed, 2008,47(8) :1508-1511.
  • 9Guieysse D, Salagnad C, Monsan P, et al. Towards a novel explanation of Pseudornonas cepacia lipase enantioselectivity via molecular modelling of the enantiomer trajectory into the active site [ J ]. Tetrahedron Asymmetry,2003,14 ( 13 ) : 1807-1817.
  • 10Ema T, Jittani M, Furuie K, et al. 5-[ 4-( 1-Hydroxyethyl ) phenyl ] -10,15,20 -triphenylporphyrin as a probe of the transition- state conformation in hydrolase-eatalyzed enantioselective transestefifieations [ J ]. J Org Chem,2002,67 (7) :2144-2151.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部