期刊文献+

I/Q不平衡OFDM系统基于噪声方差门限的信道估计

Noise variance threshold-based channel estimator for OFDM system with I/Q imbalances
下载PDF
导出
摘要 为了提高稀疏信道环境下同相/正交(I/Q)不平衡正交频分复用(OFDM)系统的性能,该文提出了一种低复杂度的门限时域最小二乘信道估计算法。该算法通过估计噪声方差确定合适的门限过滤信道响应采样点内的噪声以提高估计精度。仿真结果表明,该文算法估计精度与现有频域和时域最小二乘信道估计方法相比分别提升了6 d B、2 d B,逼近基于压缩感知的时域迭代收缩算法,且计算复杂度低于后者。 In order to improve the performance of orthogonal frequency division multiplexing( OFDM) system with in-phase and quadrature-phase( I/Q) imbalances in sparse environment,athreshold-based time-domain least square( TB-TD-LS) channel estimator is proposed with low complexity. In order to improve the accuracy of channel estimation,an approximate optimal threshold is determined according to noise variance to eliminate the noise in sampling points of channel response in the proposed estimator. The simulation result shows that the estimation accuracy of the TB-TD-LS channel estimator is improved 6 d B than that of a frequency-domain channel estimation algorithm,and is improved 2 d B than that of a time-domain channel estimation algorithm,and closes to that of a time-domain least square iterative shrinkage estimator based on compressed sensing. The computation complexity of the TB-TD-LS channel estimator is lower than that of the time-domain least square iterative shrinkage estimator based on compressed sensing.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2015年第3期317-322,共6页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61271230 61472190) 中央高校基本科研业务费专项资金(30920130122004) 东南大学移动通信国家重点实验室开放课题(2013D02)
关键词 同相/正交不平衡 正交频分复用 最小二乘信道估计 噪声方差 稀疏信道环境 频域 时域 压缩感知 in-phase and quadrature-phase imbalances orthogonal frequency division multiplexing least square channel estimator noise variance sparse environment frequency-domain time-domain compressed sensing
  • 相关文献

参考文献16

  • 1Shu Feng, Li Jun, Wu Lenan, et al. Time-frequencychannel estimation for digital amplitude modulationbroadcasting systems based on OFDM [ J ] ? IEEProceedings-Communications,2003,150(4) :259-264.
  • 2Bajwa W U,Haupt J,Sayeed A M,et al. Compressedchannel sensing : A new approach to estimating sparsemultipath channels [ J ]. Proceedings of the IEEE,2010,98(6)=1058-1076.
  • 3Berger C R, Wang Zhaohui, Huang Jianzhong,et al.Application of compressive sensing to sparse channelestimation[ J]. IEEE Communications Magazine,2010,48(11) :164-174.
  • 4Qi Chenhao, Wang Xin, Wu Lenan. Underwateracoustic channel estimation based on sparse recoveryalgorithms [ J ] ? IET Signal Processing, 2011,5(8):739-747.
  • 5Berger C R, Zhou Shengli, Preisig J C, et al. Sparsechannel estimation for multicanier underwater acousticcommunication : From subspace methods to compressedsensing[ J] . IEEE Trans on Signal Processing, 2010,58(3) :1708-1721.
  • 6Sun Teng,Song Zhiqun, Zhang Yongjie. Matchingpursuit based sparse channel estimation usingpseudorandom sequences [ A ]. 5 th Global Symposiumon Millimeter Waves ( GSMM ) [ C ]. Harbin,China :IEEE,2012 :33-37.
  • 7Hu Die, Wang Xiaodong, He Lianghua. A new sparsechannel estimation and tracking method for time-varying OFDM systems [ J ]. IEEE Transactions onVehicular Technology,2013,62(9) :4648-4653.
  • 8Guo Sichuan, He Zhiqiang, Jiang Weipeng, et al.Channel estimation based on compressed sensing inhigh-speed underwater acoustic communication [ A ].9th International Conference on Information, Communi-cations and Signal Processing ( ICICS) [ C ]. Tainan,China: IEEE,2013 :l-5.
  • 9Qi Chenhao,Wu Lenan. A study of deterministic pilotallocation for sparse channel estimation in OFDMsystems [ J ]. IEEE Communications Letters, 2012,16(5):742-744.
  • 10Qi Chenhao,Yue Guosen,Wu Lenan,et al. Pilot designfor sparse channel estimation in OFDM-based cognitiveradio systems [ J ]. IEEE Transactions on VehicularTechnology,2014,63(2) :982-987.

二级参考文献4

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部