期刊文献+

具有Smith增长种群的时滞经济捕获模型 被引量:1

Delayed economic harvesting model for population with Smith growth
下载PDF
导出
摘要 为了更真实地反映种群增长规律,该文建立了一类种群具有Smith增长的时滞经济捕获模型。利用时滞微分方程理论研究了系统平衡点的稳定性。分析了正平衡点的稳定性随时滞变化的开关现象。研究表明:时滞现象对平衡点的稳定性影响很大;当时滞增大时,稳定的平衡点会变成不稳定的,而正平衡点会出现稳定性的开关现象;当时滞足够大时,稳定的正平衡点最终会变为不稳定的;需要根据种群的时滞,适当控制捕获努力量,从而使得捕获努力量和种群的规模达到一个稳定的平衡状态。 To reflect the rule of population growth really,a delayed economic harvesting model for population with Smith growth is established. The stability of equilibriums is studied by the theory of delay differential equation. The stability switch of positive equilibriums with time delay is analyzed.The results show that the stability of equilibriums is influenced by time delay greatly; when the time delay increases,stable equilibriums may become instable,and positive equilibriums may switch; when the time delay is large enough,stable positive equilibriums become instable finally; the harvesting effort and the scale of the population reach a stable equilibrium state when the harvesting effort is controlled according to the time delay.
作者 俞美华
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2015年第3期363-367,共5页 Journal of Nanjing University of Science and Technology
关键词 时滞 Smith增长 经济捕获 时滞微分方程 系统平衡点 捕获努力量 time delay Smith growth economic harvesting delay differential equation equilibriums harvesting effort
  • 相关文献

参考文献6

二级参考文献31

  • 1宋新宇,陈兰荪.A PREDATOR-PREY SYSTEM WITH STAGE STRUCTURE AND HARVESTING FOR PREDATOR[J].Annals of Differential Equations,2002,18(3):264-277. 被引量:8
  • 2范猛 王克.价格成本变化的具有退偿增长的生物种群的经济捕获模型.生物数学学报,1998,13(5):630-637.
  • 3范猛,生物数学学报,1998年,13卷,5期,630页
  • 4张芷芬,微分方程定性理论,1985年,162页
  • 5Ding X Q, Wang Y Y. Positive periodic solution for a gause-type ratio-dependent predator-prey system with diffusion and time delay[J]. International Journal of B~omathematies, 2008, 1(3):339-354.
  • 6Zhang H, Georgescu P, Chen L S. An Impulsive predator-Prey system with Beddington-Deangelis functional response and time delay[J]. International Journal of Biomathematics, 2008, 1(1):1-17.
  • 7Pei Y, Li C, Chen L. Continuous and impulsive harvesting strategies in a stage-structured predator-prey model with time delayIJ]. Mathematics and Computers in Simulation, 2009, 79:2994-3008.
  • 8Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[M]. Berlin: Springer- Verlag, 1977.
  • 9Limin Zhang,Chaofeng Zhang.Rich dynamic of a stage-structured prey–predator model with cannibalism and periodic attacking rate[J]. Communications in Nonlinear Science and Numerical Simulation . 2010 (12)
  • 10Shujing Gao,Lansun Chen,Zhidong Teng.Hopf bifurcation and global stability for a delayed predator–prey system with stage structure for predator[J]. Applied Mathematics and Computation . 2008 (2)

共引文献8

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部