期刊文献+

基于交互行为的在线社会网络水军检测方法 被引量:19

Interaction based on method for spam detection in online social networks
下载PDF
导出
摘要 网络水军对广告、谣言、木马和恶意链接进行传播,不仅干扰用户对在线社会网络的正常访问,还可能引发网络安全、社会稳定等方面的问题。针对网络水军信息传播的特点,提出基于交互行为的信息传播模型。模型根据不同传播主体间的交互定义特征来量化传播行为,使用决策树方法对水军传播的信息进行检测。通过新浪微博的真实数据分析传播模型并验证检测方法,结果表明检测方法能够对微博中水军信息进行有效检测。 In online social networks, advertisements, rumors and malicious links are propagated by spammers arbitrarily. They not only disturb users' usualaccess, but also bring about network security threats and social panics. In an attempt to deal with the spam problems, an information diffusion model was proposed to capture the features of spam propagation. Propagation behaviors are quantitatively analyzed to detect spam messages with a decision tree-based method. The effectiveness of proposed detection model is evaluated with real data from the micro-bloggingnetwork of Sina. The experimental results show that proposed model can effectively detect spams in Sina micro-bloggingnetwork.
出处 《通信学报》 EI CSCD 北大核心 2015年第7期120-128,共9页 Journal on Communications
基金 国家自然科学基金资助项目(61170285 61379103)~~
关键词 网络水军 检测 交互行为 信息传播 在线社会网络 spam detection interaction information diffusion online social network
  • 相关文献

参考文献18

  • 1http://news.ifeng.com/opinion/special/wangluoshuijun/[EB/OL].
  • 2http://zh.wikipedia.org/zh-cn/%E7%9B%B2%E6%8%A2%E7%9B% 90%E4%BA%8B%E4%BB%B6 [EB/OL].
  • 3http://qcyn.sina.com.cn/news/ynyw/2011/1205/01134061411.html [EB/oL].
  • 4" RAYMOND Y K, STEPHEN L, LIAO S Y. Text mining and probabil- istic language modeling for online review spam detection[J]. ACM Trans Management Inf Syst, 2011,2(4):25.
  • 5GRIER C, THOMAS K, PAXSON V, et al. @spam: the underground on 140 characters or less[A]. Proceedings of the 17th ACM Confer- ence on Computer and Communications Security[C]. Chicago, Illinois, USA, 2010.2%37.
  • 6IRANI D, WEBB S, PU C. Study of static classification of social spam profiles in MySpace[A]. ICWSM[C]. 2010.
  • 7THOMAS K, GRIER C, SONG D, et al. Suspended accounts in ret- rospect: an analysis of twitter spam[A]. Proceedings of the 2011 ACM SIGCOMM Conference on Interact Measurement Conference[C]. Ber- lin, Germany, 2011. 243-258.
  • 8SHIN Y, GUPTA M, MYERS S. Prevalence and mitigation of forum spamming[A]. IEEE INFOCOM 2011[C]. 2011. 2309- 2317.
  • 9BENEVENUTO F, RODRIGUES T, ALMEIDA V, et al. Identifying video spammers in online social networks[A]. Proceedings of the 4th International Workshop on Adversarial Information Retrieval on the Web[C]. Beijing, China, 2008.45-52.
  • 10RAJADESINGAN A. MAHENDRAN A. Comment spam classi-fication in blogs through comment analysis and comment-blog post relationships[A]. Proceedings of the 13th International Conference on Computational Linguistics and Intelligent Text Processing-Volume Part II[C]. New Delhi, India: Springer-Verlag, 2012.490-501.

二级参考文献11

共引文献397

同被引文献178

引证文献19

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部