期刊文献+

边界元方法中超奇异积分的计算方法 献给林群教授80华诞 被引量:2

Numerical methods to compute hypersingular integral in boundary element methods
原文传递
导出
摘要 超奇异积分的近似计算是边界元方法,特别是自然边界元理论中必须面对的难题之一.经典的数值方法,如Gauss求积公式和Newton-Cotes积分公式等数值方法,都不能直接用于超奇异积分的近似计算.本文将介绍超奇异积分基于不同定义的Gauss积分公式、S型变换公式、Newton-Cotes积分公式和外推法近似计算超奇异积分的思路,重点阐述Newton-Cotes积分公式和基于有限部分积分定义的外推法近似计算超奇异积分的主要结论. The computation of hypersingular integral is one of the important subjects in boundary element methods especially in natural boundary element methods. Classical numerical methods such as Gauss methods, Newton-Cotes methods cannot be used to approximate the hypersingular integral directly. In this paper, we introduce the numerical methods such as Gauss methods, Newton-Cotes methods, S transformation methods and extrapolation methods which are based on different definitions; then we mainly present the results of Newton-Cotes methods and extrapolation methods which are used to compute the hypersingular integral.
作者 李金 余德浩
出处 《中国科学:数学》 CSCD 北大核心 2015年第7期857-872,共16页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11471195,11101247,11201209和91330106) 中国博士后科学基金(批准号:2013M540541)资助项目
关键词 自然边界元 超奇异积分 误差泛函 Newton-Cotes积分公式 natural boundary element methods, hypersingular integral, error functional, Newton-Cotesmethods
  • 相关文献

参考文献6

二级参考文献38

  • 1HU QiYa1 & YU DeHao2 LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.A preconditioner for a kind of coupled FEM-BEM variational inequality[J].Science China Mathematics,2010,53(11):2811-2830. 被引量:1
  • 2余德浩.圆周上超奇异积分计算及其误差估计[J].高等学校计算数学学报,1994,16(4):332-337. 被引量:6
  • 3余德浩.无界区域非重叠区域分解算法的离散化及其收敛性[J].计算数学,1996,18(3):328-336. 被引量:53
  • 4Andrews L C. Special Functions of Mathematics for Engineers, second ed., McGraw-Hill, Inc, 1992.
  • 5Du Q K. Evaluations of certain hypersingular integrals on interval[J]. Int. J. Numer. Meth. Eng., 2001. 51: 1195-1210.
  • 6Elliott D, Venturino E. Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals[J]. Numer. Math., 1997, 77: 453-465.
  • 7Hasegawa T. Uniform approximations to finite Hilbert transform and its derivative[J]. J. Comput. Appl. Math., 2004, 163: 127-138.
  • 8Hui C Y, Shia D. Evaluations of hypersingular integrals using Gaussian quadrature[J]. Int. J. Numer. Methods Eng., 1999, 44: 205-214.
  • 9Ioakimidis N I. On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives[J]. Math. Comp., 1985, 44: 191-198.
  • 10Linz P. On the approximate computation of certain strongly singular integrals[J]. Computing, 1985, 35: 345-353.

共引文献36

同被引文献8

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部