期刊文献+

分解法在声波反散射问题中的最新进展 献给林群教授80华诞 被引量:1

Recent progress on the factorization method for inverse acoustic scattering problems
原文传递
导出
摘要 本文旨在总结分解法在声波反散射问题中的最新进展,其中包括经典的分解法如何应用于可穿透散射体和具有广义阻尼边界条件的复杂散射体情形,以及分解法在处理混合型散射体、近场数据反演和避免内部特征值等情形的修正方法. In this paper, we review recent progress on the factorization method for inverse acoustic scattering problems. Included are the classical factorization method for penetrable scatterers and generalized impedance boundary conditions, some modifications for mixed-typed scatterers, near-field measurements and avoiding interior eigenvalues.
作者 刘晓东 张波
出处 《中国科学:数学》 CSCD 北大核心 2015年第7期873-890,共18页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11101412,61379093和91430102)资助项目
关键词 分解法 声波 反散射 factorization method, acoustic, inverse scattering
  • 相关文献

参考文献51

  • 1Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory, 3rd ed. New York: Springer, 2013.
  • 2Potthast R. Point Sources and Multipoles in Inverse Scattering Theory. Boca Raton, FL: Chapman & Hall/CRC, 2001.
  • 3Ikehata M. Reconstruction of the shape of the inclusion by boundary measurements. Comm Partial Differential Equations, 1998, 23: 1459-1474.
  • 4Cheng J, Liu J, Nakamura G. The numerical realization of the probe method for the inverse scattering problems from the near-field data. Inverse Problems, 2005, 21: 839-855.
  • 5Erhard K, Potthast R. A numerical study of the probe method. SIAM J Sci Comput, 2006, 28: 1597-1612.
  • 6Colton D, Kirsch A. A simple method for solving inverse scattering problems in the resonance region. Inverse Problems, 1996, 12: 383-393.
  • 7Kirsch A. Charaterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Problems, 1998, 14: 1489-1512.
  • 8Kirsch A, Grinberg N. The Factorization Method for Inverse Problems. Oxford: Oxford Univercity Press, 2008.
  • 9Colton D, Kress R. Inverse scattering. In: Handbook of Mathematical Methods in Imaging. New York: Springer, 2011: 551-598.
  • 10Potthast R. Sampling and probe methods-an algorithmical view. Computing, 2005, 75: 215-235.

同被引文献3

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部