期刊文献+

人体运动分析的实例学习方法 被引量:2

Example-based approach for human motion analysis from videos
原文传递
导出
摘要 目的面向实时、准确、鲁棒的人体运动分析应用需求,从运动分析的特征提取和运动建模问题出发,本文人体运动分析的实例学习方法。方法在构建人体姿态实例库基础上,首先,采用运动检测方法得到视频每帧的人体轮廓;其次,基于形状上下文轮廓匹配方法,从实例库中检索得到每帧视频的候选姿态集;最后,通过统计建模和转移概率建模实现人体运动分析。结果对步行、跑步、跳跃等测试视频进行实验,基于轮廓的形状上下文特征表示和匹配方法具有良好的表达能力;本文方法运动分析结果,关节夹角平均误差在5°左右,与其他算法相比,有效提高了运动分析的精度。结论本文人体运动分析的实例学习方法,能有效分析单目视频中的人体运动,并克服了映射的深度歧义,对运动的视角变化鲁棒,具有良好的计算效率和精度。 Objective Human motion tracking from monocular image sequences is a challenging work in computer vision. It also has many penitential applications, such as human computer interface, computer animation, and intelligent video surveillance. Methodologies of example-based human motion tracking from monocular camera are explored in this study to meet timeliness, accuracy, and reliability requirements of human motion tracking for real applications. We focus on two main aspects: visual feature extraction and human motion modeling. Method Based on an example database that is constructed with motion capture data, an example-basod approach for human pose estimation from monocular image sequences is proposed. First, we use a motion detection method to extract human region from images. Then, an edge-tracking method is used to detect human silhouette from human region. Second, shape context is used to describe the human silhouette detected from video frames, and candidate poses are obtained from the example database by silhouette matching. Third, we build probability and statistical model of human motion and conducted pose estimation from these candidates. Result Experimental results on walking, running, and jumping videos demonstrate that shape context-based silhouette representation and matching method can effectively extract human visual feature from image. Compared with other methods, the proposed method can tackle orientation ambiguity problem effectively. Moreover, it is invariant to viewpoints. Conclusion In this paper, we proposed an example-based method for human motion analysis. Shape context is used for visual feature extraction and matching. Probability and statistical model of motion are used for pose estimation. Experimental results on different types of motion demonstrate that the proposed method can analyze 3D pose from videos effectively, thereby increasing the efficiency and accuracy of human motion analysis. Moreover, the proposed method can solve the orientation ambiguity problem, and is invariant to viewpoints.
出处 《中国图象图形学报》 CSCD 北大核心 2015年第7期922-928,共7页 Journal of Image and Graphics
基金 "十二五"装备预先研究项目(51306030101) 江苏省自然科学基金青年项目(20140078 20140079)
关键词 运动分析 实例学习 形状上下文 统计建模 motion analysis example-based approach shape context statistical modeling
  • 相关文献

参考文献15

  • 1Moeslund T B, Hilton A, Kruger V. A survey of advances in vi- sion-based human motion capture and analysis [ J ]. Computer Vision and Image Understanding, 2006, 104(2) : 90-126.
  • 2Poppe R. Vision-based human motion analysis: an overview [ J ]. Computer Vision and Image Understanding, 2007, 108( 1 ) : 4-18.
  • 3Li Y, Sun Z X. Generative tracking of 3D human motion in latent space by sequential clonal selection algorithm [ J ]. Multimedia Tools and Applications, 2014, 69( 1 ) : 79-109.
  • 4Zhao X, Fu Y, Ning H Z, et at. Human pose regression through multi-view visual fusion [ J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(7): 957-966.
  • 5Howe N R. Silhouette lookup for monocular 3D pose tracking [J]. Image and Vision Computing, 2007, 25(3) : 331-341.
  • 6Sapp B, Toshev A, Taskar B. Cascaded models for articulated pose estimation [ C]//Proceedings of the llth European Confer- ence on Computer Vision. Heraklion, Greece : IEEE Press, 2010: 406-420.
  • 7Ukita N. Articulated pose estimation with parts connectivity using discriminative local oriented contours [ C ]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE Press, 2012: 3154-3161.
  • 8Poppe R, Poel bl. Comparison of silhouette shape descriptors for example-based human pose recovery [ C]//Proceedings of the 7th International Conference on Automatic Face and Gesture Rec- ognition. Southampton, United Kingdom : IEEE Press, 2006 : 541-546.
  • 9Andreas M L, Peter V G, Sebastian N. Efficient nonlinear mark- ov models for human motion [ C ]//Proceedings of the IEEE In- ternational Conference on Computer vision and Pattern Recogni- tion. Columbus, Ohio: IEEE Press : 2014, 220-228.
  • 10Andreas M L, Peter V G, Sebastian N. A non-parametric bayes- ian network prior of human pose [ C]//Proceedings of the IEEE International Conference on Computer Vision. Sydney, Australia: IEEE Press, 2013 : 1281-1288.

二级参考文献27

  • 1Gavrila D M. The visual analysis of human movement: A survey[J]. Computer Vision and Image Understanding, 1999, 73(1 ) : 82-98.
  • 2Fejes S, Davis L S. What can projections of flow fields tell us about the visual motion [A]. In: Proceeding of International Conference on Computer Vision[ C], Bombay, India,1998 : 979-986
  • 3Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects [ J ]. IEEE Transactions on Pattern Analysis and Machine Interface,2000, 22(3) : 266-280.
  • 4Cucchiara R, Piccardi M, Prati A. Detecting moving objects,ghosts, and shadows in video streams [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (10) : 1337-1342.
  • 5Toyama K, Krumm J, Brumitt B, et al. Wallflower: Principles and practice of background maintenance[ A]. In: Proceedings of the Seventh International Conference on Computer Vision [ C ], Corfu, Greece, 1999: 255-261.
  • 6Wren C, Azarhayejani A, Darrell T, Pentland A P. Pfinder: realtime tracking of the human body [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 780-785.
  • 7Stauffer C, Grimson W E L. Adaptive background mixture models for real-time traeking[A]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [ C ], Fort Collins, Colorado, USA, 1999: 246-252.
  • 8Elgammal A, Hanvood D, Davis S. Nonparametric model for background subtraction [A]. In: Proceedings of European Conference on Computer Vision [ C ]. Dublin, Ireland, 2000 : 751-767.
  • 9Spagnolo P, DOrazio T, Leo M, et al. Moving object segmentation by background subtraction and temporal analysis[J] Image and Vision Computing, 2006, 24(5): 411-423.
  • 10Collins, Lipton, Kanade, et al. A System for Video Surveillance and Monitoring:VSAM Final Report[R]. Technical Report: CMU-RITR-00-12, Robotics Institute, Carnegie Mellon University, Pittsburgh,Penn. , USA, 2000.

共引文献37

同被引文献19

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部