期刊文献+

MapReduce模式下高光谱图像端元提取算法加速 被引量:1

Acceleration of hyperspectral image endmember extraction based on MapReduce pattern
原文传递
导出
摘要 目的随着成像光谱仪的发展,高光谱遥感图像的空间分辨率和光谱分辨率越来越大,这给高光谱遥感图像解译处理及应用带来挑战。本文提出一种基于MapReduce模式的分布式混合并行处理模型来加速高光谱解混处理。方法为降低算法计算复杂度,对原串行算法进行并行化设计,并采用行列式分块计算法对原算法进行化简计算;最后在分布式集群环境下,采用Jama和JCuda组件来加速算法执行过程中的矩阵运算操作。结果针对224波段,400×400像素空间分辨率的高光谱图像,采用分布式混合计算模型进行解混处理比原始的处理方法在速度上有近十倍的提高,且算法计算量越大,加速效果越明显。结论本文提出了一种基于MapReduce模式的分布式混合并行处理方法来加速最大单形体体积端元提取算法,加速效果明显;采用分块法求解行列式可以大大降低算法复杂度。该方法对计算任务可并行划分、主机与节点间数据交换量少且计算复杂类算法加速效果明显。 Objective With the development of imaging spectrometer, the spectral resolution and space resolution have been enhanced dramatically which makes a challenge to hyperspectral unmixing processing. So a new distributedhybrid parallel model has been proposed to accelerate hyperspectral unmixing processing. Method In order to reduce the computational complexity of endmember extraction algorithm, the original serial method has been redesigned for parallel computation and a fast implementation of improved method has been proposed based on partitioned determinant operations. At the same time, the Jama and JCuda components have been used to accelerate the computation in distributed cluster environment. Result The proposed distributed hybrid parallel method plays a large role in accelerating hyperspectral unmixing based on maximum simplex volume algorithm. The improved MapReduce model method is near ten times more rapid than the original method for the hyperspectral image which size is 400 × 400 × 224. And the more computational load, the more speed up. Conclusion In this paper, the proposed distributedhybrid parallel method can increase the hyperspectral unmixing processing speed dramatically. At the same time, the partitioned determinant solving method can reduce the complexity of MSVA algorithm. The experimental resuhs indicate that the proposed method can achieve great speedup to the algorithms which have characters of parallel executive tasks, lower data transmission between main node and sub nodes and massive calculations.
出处 《中国图象图形学报》 CSCD 北大核心 2015年第7期973-980,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61172144) 国家高技术研究发展计划(863)基金项目(2012AA12A405)
关键词 光谱解混 分布式计算 端元提取 分块行列式 spectral unmixing distributed computation endmember extraction partitioned determinant
  • 相关文献

参考文献14

  • 1Goetz. A F H. Three decades of hyper- spectral remote sensing of the earth: a personal view [ J]. Remote sensing of Environment, 2009, 113 : s5-s16.
  • 2Bioucas-Dias J, Plaza A, Camps-Vails G, et al. Hyperspectral remote sensing data analysis and future challenges [ J ]. IEEE Geoseience and Remote Sensing Magazine, 2013, 1 (2) : 6-36.
  • 3Chang C I, Xiong W, Liu W, et al. Linear spectral mixture analysis based approaches to estimation of virtual dimensionality in hyperspectral imagery [ J ]. IEEE Transactions on Geoscienee and Remote Sensing, 2010, 48 (11 ) : 3960-3979.
  • 4Xiong W, Chang C I, Wu C C, et al. Fast algorithms to imple- ment N-FINDR for hyperspeetral endmember extraction [ J ]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(3) : 545-564.
  • 5赵春晖,齐滨,王玉磊.一种改进的N-FINDR高光谱端元提取算法[J].电子与信息学报,2012,34(2):499-503. 被引量:9
  • 6丁海勇,史文中.利用卡方分布改进N-FINDR端元提取算法[J].遥感学报,2013,17(1):122-137. 被引量:15
  • 7Wu C C, Lo C S, Chang C. Improved process for use of a sim- plex growing algorithm for endmember extraction[ J]. Geoscience and Remote Sensing Letters, IEEE, 2009, 6(3) : 523-527.
  • 8Nascimento J M P, Dias J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43 (4) : 898-910.
  • 9Plaza A, Du Q, Chang Y L, et al. High performance computing for hyperspectral remote sensing [ J ]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(3) : 528-544.
  • 10Geng X, Zhao Y, Wang F, et al. A new volume formula for a simplex and its application to endmember extraction for hyper- spectral image analysis [ J ]. International Journal of Remote Sensing, 2010, 31 (4) : 1027-1035.

二级参考文献46

共引文献225

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部