期刊文献+

改进的迭代算法在图像恢复正则化模型中的应用 被引量:13

The Application of Improved Iterative Algorithm to Regularization Model of Image Restoration
下载PDF
导出
摘要 根据图像成像过程容易受泊松噪声的影响,提出用Kullback-Leibler距离描述保真项,用平方根复合函数描述正则项,建立具有自适应权系数的能量泛函正则化模型.由于模型的梯度退化和海森矩阵的规模较大,使得无法应用牛顿迭代算法.本文利用退化梯度幅值作为约束集,建立可对角化和容易求逆的海森矩阵,提出改进的牛顿投影迭代算法.仿真表明,该方法取得较小的相对误差、偏差,较高的信噪比和良好的视觉效果. According to the imaging process is easily affected by Poisson noise,the image restoration regularization model that fidelity term is described by Kullback-Leibler Euclidean and the regularization term is established by the square root compound function,with adaptive weight coefficients,is proposed. For the gradient degeneration and the large scale Hessian matrix,it is unable to apply the Newton iterative algorithm to the model. In this paper,constraint set is introduced by the magnitude value of degeneration gradient,the diagonal and easily computed Hessian matrix is established,and the improved Newton iterative projection algorithm is proposed. Simulation results showthe proposed can effectively restore image,such as the lower relative error and deviation,the higher peak signal to noise ratio,and better visual effect.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第6期1152-1159,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61104211) 江苏省高校自然科学基金(No.10KJB120004) 江苏师范大学博士人才基金(No.10XLR27)
关键词 正则化 图像恢复 海森矩阵 活跃集 regularization image restoration Hessian matrix active set
  • 相关文献

参考文献15

  • 1Vogel Curtis R. Computational Methods for Inverse Problems [ M]. Philadelphia, Pennsylvania: Society for Industrial and Ap- plied Mathematics,2002.1 - 183.
  • 2唐利明,黄大荣.变分框架下的多尺度图像恢复与重建[J].电子学报,2013,41(12):2353-2360. 被引量:5
  • 3Aubert G, Kornprobst Pierre. Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Variations[ M ]. New York, USA: Springer-Verlag, 2006.1 - 371.
  • 4童基均,刘进,蔡强.基于全变差的加权最小二乘法PET图像重建[J].电子学报,2013,41(4):787-790. 被引量:6
  • 5Liu X W,Huang L H, Guo Z Y. Adaptive fourth-order partial differential equation filter for image denoising [ J ]. Applied Mathematics Letters, 2011,24 (8) : 1282 - 1288.
  • 6Dykes L,Reichel L. Simplified GSVD computations for the so- lution of linear discrete iU-posed problems[ J] .Journal of Com- putational and Applied Mathematics, 2014,255( 1 ) : 15 - 27.
  • 7Beck Amir, Teboulle Marc. A fast dual proximal gradient algo- rithm for convex minimization and applications[ J]. Operations Research Letters,2014,42( 1 ) : 1 - 6.
  • 8Duran Joan, Coll Bartomeu, Sbert Catalina. Chambolle' s pro- jection algorithm for total variation denoising[ J]. Image Pro- cessing on Line,2013,2013(3) :301 - 321.
  • 9Dai Y H, Kou C X. A nonlinear conjugate gradient algorithm with an optimal property and an improved wolfe line search [ J] .SIAM Journal on Optimization,2013,23(1) :296- 320.
  • 10Sun Wenyu, Yuan Yaxiang. Optimization Theory and Methods Nonlinear Programming[M]. New York, USA: Springer Sci- ence Business Media,2006,1 - 687.

二级参考文献15

  • 1白键,冯象初.基于曲线波变换的图像分解[J].电子学报,2007,35(1):123-126. 被引量:2
  • 2曾更生.医学图像重建人门[M].北京:高等教育出版社,2009.125-171.
  • 3J Anderson,BA Mair,Murali Rao, et al. Weighted least-squares reconstruction methods for positron emission tomography [ J ]. IF.EE Trans on Med Image, 1997,16(2) : 159 - 165.
  • 4J A Fessler. Penalized weighted least-squares image recon- struction for positron emission tomography[ J ]. IEEE Trans on Med Image. 1994,13(2) :290 - 300.
  • 5J A Fessler,E P Ficaro, et al. Grouped-coordinate ascent algo-rithms for penalized-likelihood transmission image reconstruc- tion[J]. IEEE Trans on Med Image, 1997,16(2):166- 175.
  • 6Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[ J ]. IEEE Trans Inform Theory, 2006,52 (2) : 489 - 509.
  • 7Donoho D L. Compressed sensing[ J]. IEEE Trans Inform The- ory,2006,52(4) : 1289 - 1306.
  • 8朱宏擎,舒华忠,等.正电子发射计算机断层显像的全变分加权成像方法[P].中国专利:200510037621.8,2005-01-06.
  • 9xiaoqiang Lu, Yi sun, et al. Image reconstruction by an alter- nating minimization[J].Neuro Computing, 201 l, 74 ( 5 ) : 661 - 670.
  • 10S J Wright, R D Nowak, et al. Sparse reconstruction by sepa- rable approximation[ JJ. IEEE. Trans on Signal Process, 2009, 57(7) :2479 - 2492.

共引文献9

同被引文献70

引证文献13

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部