期刊文献+

Q2中常曲率拉格朗日曲面

The Lagrangian surfaces with constant curvature in Q_2
下载PDF
导出
摘要 描述了复流形Q2中一类常曲率H极小拉格朗日曲面,并且给出Q2中一个高斯曲率K=2的极小拉格朗日球面. A class of H-minimal Lagrangian surfaces with constant curvature in Q2 was described, and an example was given of minimal Lagrangian S2 with Gaussian curvature K=2.
作者 李康 胡森
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2015年第6期431-435,共5页 JUSTC
关键词 拉格朗日曲面 常曲率 H极小 Lagrangian surfaces constant curvature H-minimal
  • 相关文献

参考文献8

  • 1Castro I, Urbano F. Examples of unstable Hamiltonian-minimal Lagrangian tori in C2 [J]. Compositio Math, 1998, 111: 1-14.
  • 2Schoen R, Wolfson J. Minimizing volume among Lagrangian submanifolds [C]// Proc Sympos Pure Math: Vol 65. Providence, RI: Amer Math Soc, 1999: 181-199.
  • 3Ma H, Schmies M. Examples of Hamiltonian stationary Lagrangian tori in CP2[J]. Geom Dedicata, 2006, 118: 173-183.
  • 4Mironov A E, Zuo D. On a family of conformally flat Hamiltonian minimal Lagrangian tori in CP3 [J]. Int Math Res Not, 2008,2008: 10. 1093/imrn/rnn078.
  • 5Jiao X X, Wang J. Totally real minimal surfaces in the complex hyperquadrics[J]. Diff Geo Appl, 2013, 31: 540-555.
  • 6Hu S, Chen Q, Xu X W. Construction of Lagrangian submanifolds in CPn[J]. Pacific Journal of Math, 2012, 258: 31-49.
  • 7Chern S S, Wolfson J. Minimal surfaces by moving frames[J]. Amer J Math, 1983, 105(1):59-83.
  • 8Yang K. Complete and Compact Minimal Surface[M]. Dordrecht: Kluwer Academic, 1989.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部