期刊文献+

广义线性模型中带有测量误差的序贯压缩估计(英文)

Sequential shrinkage estimation in generalized linear models with measurement errors
下载PDF
导出
摘要 对带测量误差的广义线性模型提出一种序贯压缩估计方法来确定最小样本量,使得在此最小样本量下所提方法可以选择有效变量,同时还可以获得给定精度下的回归参数估计.也研究了所提方法的渐进性质,包括序贯置信域的覆盖概率、最小样本量的效率等.模拟研究表明基于序贯压缩估计的抽样方法比传统的序贯抽样方法能够节省大量的样本.最后,用所提方法来分析一个糖尿病数据集. A sequential shrinkage estimation method was developed to determine a minimum sample size under which both of the variable selection and the parameter estimation with a pre- specified accuracy were achieved for the generalized linear model with measurement errors. Asymptotic properties of the proposed sequential estimation method, such as the coverage probability of the sequential confidence set and the efficiency of the minimum sample size, were studied. Simulation studies were conducted and the results show that the proposed method can save a large number of samples compared to the traditional sequential sampling method. Finally a diabetes data set was used as an example.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2015年第6期449-459,496,共12页 JUSTC
基金 Supported by NNSF of China(11231010,11471302) the Fundamental Research Funds for the Central Universities(WK2040000010)
关键词 广义线性模型 序贯抽样 自适应压缩估计 停时 置信域 generalized linear model sequential sampling adaptive shrinkage estimate stoppingrule confidence set
  • 相关文献

参考文献19

  • 1Nelder J A, Wedderburn R W M. Generalized linear models[J]. Journal of the Royal Statistical Society, Series A, 1972, 135(3): 370-384.
  • 2Fahrmeir L, Kaufmann H. Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models[J]. The Annals of Statistics, 1985, 13(1): 342-368.
  • 3McCullagh P, Nelder J A. Generalized Linear Models [M]. 2nd ed. New York: Chapman & Hall, 1989.
  • 4Chen K, Hu I, Ying Z. Strong consistency of maximum quasi-likelihood estimators in generalized linear models with fixed and adaptive designs[J]. The Annals of Statistics, 1999, 27(4): 1 155-1 163.
  • 5Wang Z F, Chang Y C I. Sequential estimate for linear regression models with uncertain number of effective variables[J]. Metrika, 2013, 76.949-978.
  • 6Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society, Series B, 1996, 58(1): 267-288.
  • 7Efron B, Hastie T, Johnstone I, et al. Least angle regression[J]. The Annals of Statistics, 2004, 32(2): 407-499.
  • 8Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties [J]. Journal of the American Statistical Association, 2001, 96(456): 1 348-1 360.
  • 9Chang Y C I. Sequential confidence regions of generalized linear models with adaptive designs [J]. Journal of Statistical Planning and Inference, 2001, 93. 277-293.
  • 10LU Haibo,WANG Zhanfeng,WU Yaohua.Sequential Estimate for Generalized Linear Models with Uncertain Number of Effective Variables[J].Journal of Systems Science & Complexity,2015,28(2):424-438. 被引量:1

二级参考文献14

  • 1Nelder J A and Wedderburn R W M, Generalized linear models, Journal of the Royal Statistical Society, Series A, 1972, 135: 370-384.
  • 2Fahrmeir L and Kautmann H, Consistency and asyptotic normality of the maximum likelihood estimator in generalized linear models, Journal of Annals of Mathematical Statistics, 1985, 13: 342-368.
  • 3McCullagh P and Nelder J A, Generalized Linear Models, 2nd Edition, Chapman & Hall, New York, 1989.
  • 4Chen K, Hu I, and Ying Z, Strong consistency of maximum quasi-likelihood estimators in gen- eralized linear models with fixed and adaptive designs, Journal of Annals of Statistics, 1999, 27: 1155-1163.
  • 5Wang Z F and Chang Y I, Sequential estimate for linear regression models with uncertain number of effective variables, Metrika, 2013,76: 949-978.
  • 6Tibshirani R, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, Series B, 1996, 58: 267-288.
  • 7Efron B, Hastie T, Johnstone I, and Tibshirani R, Least angle regression, Journal of Annals of Statistics, 2004, 32: 407-499.
  • 8Siegmund D, Sequential Analysis: Tests and Confidence Intervals, Springer-Verlag, New York, 1985.
  • 9Whitehead J, The Design and Analysis of Sequential Clinical Trials, 2nd Edition, John Wiley & Sons, New York, 1997.
  • 10Chang Y I, Sequential confidence regions of generalized linear models with adaptive designs, Journal of Statistical Planning and Inference, 2001, 93: 277-293.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部