期刊文献+

基于局部学习的受限非负矩阵分解算法 被引量:5

Constrained nonnegative matrix factorization based on local learning
原文传递
导出
摘要 为了利用样本的局部结构信息与少量标记样本的类别信息,提出了一种基于局部学习的受限非负矩阵分解算法,并应用于数据表示.为了考虑样本的局部结构信息,通过每个样本邻域构建出的分类器对样本的类别进行预测;同时,还将样本中存在的类别信息作为硬约束,使得相同类别的高维样本在低维表示空间保持一致.算法不仅利用了样本的几何流形结构信息与鉴别结构信息,还考虑了标记样本的类别信息,因此比传统的非负矩阵算法具有更强的鉴别性.在20Newsgroups文本库和ORL人脸库中的实验结果表明了算法能提高分解准确率和归一化互信息. In order to make use of the local structure information and the label information of limited labeled data,constrained nonnegative matrix factorization based on local learning(CNMFLL)was proposed for data representation.To take consideration of the local structure information in the data,apredictor was constructed by the neighborhood of each point and its label information was estimated.In addition,the label information of the labeled data was as hard constraints so that the samples sharing the same label in high dimensional space had the same coordinate in new representation space.Therefore,this algorithm not only makes use of the geometry structure information and discriminate structure information,but also considers the label information of labeled data.Thus,CNMFLL has more discriminate power than traditional NMF.The experimental results on 20 Newsgroups text database and ORL face database show that the proposed algorithm can improve the accuracy and normalize mutual information.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第7期82-86,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61272220 61101197 61401214)
关键词 非负矩阵分解 局部结构 类别信息 硬约束 鉴别性 nonnegative matrix factorization local structure label information hard constraints discriminaterithm
  • 相关文献

参考文献13

  • 1Zhao W,Chellappa R,Phillips P J,et al.Face recognition:a literature survey[J].ACM Computing Surveys(CSUR),2003,35(4):399-458.
  • 2Xu W,Gong Y.Document clustering by concept factorization[C]∥Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Sheffueld:ACM,2004:202-209.
  • 3Cai D,He X,Han J.Locally consistent concept factorization for document clustering[J].IEEE Trans on Knowledge and Data engineering,2011,23(6):902-913.
  • 4Duda R O,Hart P E,Stork D G.Pattern classification[M].Hoboken:Wiley-Interscience,2000.
  • 5Lee D D,Seung H S.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999:788-791.
  • 6Cai D,He X,Han J,et al.Graph regularized nonnegative matrix factorization for data representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1548-1560.
  • 7Chen Y,Zhang J,Cai D,et al.Nonnegative local coordinate factorization for image representation[J].IEEE Trans Image Process,2013,22(3):969-979.
  • 8Gu Q,Zhou J.Local learning regularized nonnegative matrix factorization[C]∥Proceedings of TwentyFirst International Joint Conference on Artificial Intelligence.[s.n.],2009:1044-1051.
  • 9Liu H,Yang Z,Wu Z.Locality-constrained concept factorization[C]∥Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence.California:AAAI Press,2011:1378-1383.
  • 10Shu Z,Zhao C,Huang P.Constrained sparse concept coding algorithm with application to image representation[J].KSII Transactions on Internet and Information Systems(TIIS),2014,8(9):3211-3230.

二级参考文献15

  • 1Lee D D, Seung H S. Learning the Parts of Objects by Non-negativeMatrix Factorization. Nature, 1999, 401 (6755): 788-791.
  • 2Duda R 0, Hart P E, Stork D G. Pattern Classification. New York:Wiley-Interscience, 2000.
  • 3Belkin M, Niyogi P, Sinndhwani V. Manifold Regularization; AGeometric Framework for Learning from Labeled and Unlabeled Ex-amples. Journal of Machine Learning Research, 2006 , 7(11):2399-2434.
  • 4Zhou Dengyong, Bousquet 0,Lai T N, ef al. Learning with Localand Global Consistency // Thrun S, Saul L K, Schdlkopf B, eds.Advances in Neural Information Processing Systems. Cambridge,USA: MIT Press, 2003: 321-328.
  • 5Zhu Xiaojin, Chahramani Z, Lafferty J. Semi- Supervised LearningUsing Gaussian Fields and Harmonic Function // Proc of the 20thInternational Conference on Machine Learning. Washington, USA,2003: 912-919.
  • 6Cai Deng, He Xiaofei, Han Jiawei, et al. Graph Regularized Non-negative Matrix Factorization for Data Representation. IEEE Transon Pattern Analysis and Machine Intelligence, 2011,33(8): 1548-1560.
  • 7Liu Haifeng, Wu Zhaohui, Li Xuelong, et al. Constrained Non-neg-ative Matrix Factorization for Image Representation. IEEE Trans onPattern Analysis and Machine Intelligence, 2012,34(7): 1299-1311.
  • 8Buciu I, Pitas I. Application of Non-Negative and Local Non-Nega-tive Matrix Factorization to Facial Expression Recognition // Proc ofthe 17th International Conference on Pattern Recognition. Cam-bridge, UK, 2004 : 288- 291.
  • 9Zafeiriou S, Tefas A, Buciu I,et al. Exploiting Discriminate Infor-mation in Nonnegative Matrix Factorization with Application to Fron-tal Face Verification. IEEK Trans on Neural Network, 2006, 17(3): 683 -695.
  • 10Hoyer P 0. Non-Negative Matrix Factorization with SparsenessConstraints. Journal of Machine Learning Research,2004,5 :1457-1469.

共引文献5

同被引文献18

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部