期刊文献+

浅球壳型双稳振动能量收集器件结构优化设计 被引量:2

Structural optimum design of shallow spherical shell-type bistable vibration energy harvester
下载PDF
导出
摘要 以浅球壳型双稳振动能量收集器件为研究对象,导出宽带随机激励下以能量收集效率最大为目标的结构优化设计方案。应用假设模态法及Lagrange方程法导出浅球壳结构非线性随机微分方程。采用稳态期望穿阈率描述结构跳变频率,并选取壳体处于底圆位置的应变能衡量每次跳变可收集能量。以稳态期望穿阈率与参考应变能乘积构造可收集功率概念,可收集功率可平衡跳变频率与每次跳变相应的可收集能量。以可收集功率最大为目标,导出最优无量纲几何参数与最优无量纲可收集功率。因其具有无量纲本质,该结构最优设计方案具有普适性。 A shallow spherical shell-type bistable vibration energy harvester was investigated,and its structural optimum design was achieved by maximizing the efficiency of the energy harvesting.A nonlinear stochastic differential equation was derived by using the assumed mode method and the Lagrange procedure.The stationary rate of expectation crossing was adopted to describe the frequency of snapping through,while the deformation energy of the shell lying at the bottom circle position to describe the harvestable energy in each snapping through.The concept of harvestable power was introduced and it is expressed as the product of stationary rate of expectation crossing and referred deformation energy, which can make a balance between these two indexes.The optimal non-dimensional geometric parameters and the associated optimal non-dimensional harvestable power were then derived by maximizing the harvestable power.Due to the non-dimensional property,the proposed structural optimum design method keeps universality.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第14期21-26,共6页 Journal of Vibration and Shock
基金 国家自然科学基金项目(11025211 11302064)
关键词 振动能量收集 双稳 浅球壳 宽带随机激励 穿阈率 可收集功率 vibration energy harvesting bi-stable shallow spherical shell wideband random excitation rate of crossing harvestable power
  • 相关文献

参考文献21

  • 1Beeby S P, Tudor M J, White N M. Energy harvesting vibration sources for microsystems applications [ J ]. Meas. Sci. Technol. , 2006, 17 : 175 - 195.
  • 2Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials ( 2003 - 2006 ) [J]. Smart Mater. Struct. , 2007, 16:1 -21.
  • 3Ma T, Wang Y, Tang R, et al. Pre-patterned ZnO nano- ribbons on soft substrates for stretchable energy harvesting applications [ J ]. Journal of Applied Physics, 2013, 113 : 204503.
  • 4Wang , Ma T, Yu H, et al. Random analysis on controlled buckling structure for energy harvesting [ J ]. Applied Physics Letters, 2013, 102: 041915.
  • 5阚君武,徐海龙,王淑云,汪彬,赵子超,程光明.多振子串联压电俘能器性能分析与测试[J].振动与冲击,2013,32(22):79-83. 被引量:15
  • 6刘祥建,陈仁文.压电振动能量收集装置研究现状及发展趋势[J].振动与冲击,2012,31(16):169-176. 被引量:82
  • 7Tang L, Yang Y, Soh C K. Toward broadband vibration- based energy harvesting [ J ]. Journal of Intelligent Material Systems and Structures, 2010, 21:1867 -1897.
  • 8Zhu D, Tudor M J, Beeby S P. Strategies for increasing the operating frequency range of vibration energy harvesters: a review [J]. Meas. Sci. Technol. , 2010, 21: 022001.
  • 9Cottone F, Vocca H, Gammaitoni L. Nonlinear energy harvesting [J]. Phys. Rev. Lett. , 2009, 102: 080601.
  • 10Pellegrini S P, Tolou N, Schenk M, et al. Bistable vibration energy harvesters: a review [ J ]. Journal of Intelligent Material Systems and Structures, 2013, 24 ( 1! ) : 1303 -1312.

二级参考文献62

  • 1周洋,万建国,陶宝祺.PVDF压电薄膜的结构、机理与应用[J].材料导报,1996,10(5):43-47. 被引量:22
  • 2唐彬,温志渝,温中泉,董媛.振动式微型发电机的研究现状与发展趋势[J].微纳电子技术,2007,44(5):254-258. 被引量:6
  • 3Guan M J, Liao W H. On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages[ J]. Smart Materials and Structures, 2007, 16(2) : 498 -505.
  • 4Roundy S, Wright P K, Pister K S. Micro-electrostatic vibration to electricity converters [ C ]. Proceedings of ASME International Mechanical Engineering Congress & Exposition. New Orleans, Louisiana: ASME, 2002:1 - 10.
  • 5Wang P H, Dai X H, Fang D M, et al. Design, fabrication and performance of a new vibration-based electromagnetic micro power generator[ J]. Microelectronics, 2007, 38( 12): 1175 - 1180.
  • 6Sbearwood C, Yates R B. Development of an electromagnetic micro-generator [ J ]. Electronics Letters, 1997, 33 ( 22 ) : 1883 - 1884.
  • 7Mitcheson P D, Miao P, Stark B H, et al. MEMS electrostatic micropower generator for low frequency operation [J]. Sensors and Actuators A, 2004, 115 (2 - 3) : 523 - 529.
  • 8Shen D, Park J H, Ajitsaria J, et al. The design, fabrication and evaluation a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting [ J ]. Journal of Micromechanics and Microengineering, 2008, 18(5) : 550- 557.
  • 9Chew Z J, Li L J. Design and characterization of a piezoelectric scavenging device with multiple resonant frequencies[J]. Sensors and Actuators A, 2010, 162( 1 ): 82 - 92.
  • 10Feenstra J, Granstrom J, Sodano H. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack [ J ]. Mechanical Systems and Signal Processing, 2008, 22(3): 721 -734.

共引文献97

同被引文献15

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部