期刊文献+

基于多源数据融合的协同推荐方法 被引量:3

Collaborating Filtering Method Based on Multiple Data Sources
下载PDF
导出
摘要 大数据环境下,实现多源数据的高效利用是推荐服务的一个重要问题。为此,基于协同推荐方法,选取相似用户的消费行为完成推荐排序,在用户聚类过程引入预聚类单元和综合聚类单元。预聚类单元对用户一产品评分矩阵、电信业务身份、用户网络关注内容等数据,分别进行相似度计算。综合聚类单元计算数据丰度权重,进行综合相似度计算和用户聚类。同时,引入了可调节的效度权重,根据推荐结果的点击率和转化率,自动优化推荐系统。 The highly efficient utilization of multiple data sources is a key challenge in big data applications. Based on the collaborative filtering recommendation, services pick consumption behaviors of similar clients by clustering to generate the recommendation list. Client clustering contains two units, one is preliminary clustering, and the other is synthetic clustering. Preliminary clustering use client-product score matrixes, telecommunication service identities, client network behaviors and etc. to calculate similarities. Synthetic clustering weights the abundance of data, and then completes the similarity calculation and client clustering. Adjustable weights of data validity were introduced to optimize the system on the basis of click rates and conversion rates of recommendation list.
出处 《电信科学》 北大核心 2015年第7期86-89,共4页 Telecommunications Science
关键词 推荐方法 数据融合 电信企业 权重 recommendation method, data fusion, telecom corporation, weight
  • 相关文献

参考文献4

二级参考文献133

  • 1李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:903
  • 2周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 3李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:405
  • 4张锋,常会友.基于分布式数据的隐私保持协同过滤推荐研究[J].计算机学报,2006,29(8):1487-1495. 被引量:17
  • 5陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 6Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 7Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 8梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 9Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 10Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749

共引文献583

同被引文献52

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部