期刊文献+

采用气隙不均匀改善永磁同步电机性能 被引量:12

Using Uneven Airgap to Improve Performance of Permanent Magnet Synchronous Motor
下载PDF
导出
摘要 为使内置式永磁同步电动机稳定运转,本文选用转子偏心致使气隙不均匀来改善磁场波形,将齿槽转矩幅值下降。同时铁心损耗降低和输出转矩提高,电机的性能得到提高。基于Maxwell 2D对不同最大气隙δmax、最小气隙δmin组合对应的偏心距H进行扫描分析,得到齿槽转矩最小的偏心距H。再对比分析气隙均匀和不均匀时气隙磁场波形、输出转矩和铁心损耗,仿真结果表明合理的气隙不均匀可以改善电机性能。最终试制一样机,获得样机试验结果与Maxwell仿真值比照,误差小于8%,验证了Maxwell设计电机的高精度。 In order to make permanent magnet synchronous motor in smooth operation, the paper using the eccentric rotor structure to get the uneven air gap to improve magnetic field waveform. It can reduce the amplitude of cogging torque, decrease the core loss and improve output torque, so it can improve the performance of motor. The different maximum airgap 8 the minimum airgap 8mln assemblages corresponding to the eccentricity H. It based on maxwell to scan the different H to get the H of minimum cogging torque. And then the uneven airgap were compared in magnetic field waveform, get the output torque, the core loss, the simulation result. It shows the reasonable non-uniform airgap can improve motor performance. Finally, a prototype, obtained the test result. In contrast to the simulation values of Maxwell, the error rate is less than 8% , it verified the high precision Maxwell design of motor.
出处 《微电机》 2015年第7期22-25,共4页 Micromotors
基金 中国电器科学研究院有限公司风电智能维护与可靠性联合实验室项目(2013J4500042)
关键词 内置式永磁同步电动机 不均匀气隙 齿槽转矩 MAXWELL 高精度 Built in type permanent magnet synchronous motor Uneven airgap Cogging torque Maxwell Simulation High-accuracy
  • 相关文献

参考文献3

二级参考文献12

  • 1冯江华.城轨车辆用永磁同步电机驱动系统控制策略研究[D].长沙:中南大学,2008.
  • 2TERASHIMA M,ASHIKAGI T,MIZUNO T,et al.Novel motor and controllers for high-performance electric vehicle with four in-wheel motor[J].IEEE Trans.Industrial Electronics,1997,44 (1):28-38.
  • 3CHUN J S,HYUN K J,HALHN S Y.A study on comparison of optimization performances between immune algorithm and other heuristic algorithm[J].IEEE Trans.on Magnetics,1998,34 (5):2972-2975.
  • 4FUJISHIMA Y,WAKAO S,KONDO M,et al.An optimal design of interior permanent magnet synchronous motor for the next generation commuter train[J].IEEE Trans.on Applied Superconductivity,2004,14(2):1902-1905.
  • 5OKADA Y,INOUE H,FUSAYASU H,et al.Analysis for permanent magnet motor taking account of magnetizing process[J].IEEE Trans.on Magnetics,1997,33(2):2113-2116.
  • 6BIANCHI N,BOLOGNANI S,ZIGLIOTTO M.High-performance PM synchronous motor drive for an electrical scooter[J].IEEE Trans.on Industrial Electronics,2001,37(9):1348-1355.
  • 7Masayuki Terashima,Tadashi Ashikaga.Novel Motor and Controllers for High-performance Electric Vehicle with Four in-Wheel Motor[J].IEEE Trans.Ind.Electronics,1997,44(1):28-38.
  • 8Chun Jang-sung,Jung Hyun-kyo,Halhn Song-yop.A Study on Comparison of Optimization Performances Between Immune Algorithm and other Heuristic Algorithm[J].IEEE Trans.Mag.1998,34(5):2972-2975.
  • 9Satoshi T,Yasufumi I,Yasuhiro K.The Optimal Control System of Interior Permanent Magnet Motors for Electric Vehicles[C].Proc.of EVS-13,1996:557-561.
  • 10Takayuki Mizuno,Yasuo Yanagibashi,Hiroshi Shimizu.New drive system for electric vehicle[D].Proc.of EVS-13,1996:70-77.

共引文献89

同被引文献74

引证文献12

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部