期刊文献+

可压缩Navier-Stokes方程的球对称经典解

The classical solutions to the spherically symmetric compressible Navier-Stokes equations
下载PDF
导出
摘要 可压缩Navier-Stokes方程反映着流体力学研究的前沿,为了对其Vaigant-Kazhikhov模型的解进行深入研究,借鉴并推广了相关文献关于二维方程密度估计的方法到三维球对称情形,证明了外区域中Cauchy问题的球对称经典解的适定性。证得当黏性系数λ(ρ)=ρβ时,β>14/5以及当初始密度远离真空状态时,解在有限时间段内也不会出现真空状态。 The compressible Navier-Stokes equations has an important position in the progress of fluid mechanics. In order to research the Vaigant-Kazhikhow model, the methods of related arti- cles in 2D are referenced and the results of the 3D spherically symmetric situation are obtained. It is proved that the global well-posedness of the classical solution to the Cauchy problem of spheri- cally symmetric compressible Navier-Stokes equations in an exterior domain. When the bulk vis- cosity λ(ρ)=ρB,β〉14/5 ,it is shown that the solution will not develop the vacuum states in any fi- nite time provided the initial density is uniformly away from vacuum.
作者 王梅 方莉
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期1-5,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 陕西省自然科学基础研究计划(2012JQ1020)
关键词 可压缩Navier—Stokes方程 三维球对称 CAUCHY问题 全局适定性 compressible Navier-Stokes equations 3D spherically symmetric Cauchy problem global well-posedness
  • 相关文献

参考文献8

  • 1Jiu Q S,Wang Y,Xin Z P.Global classical solutions to the two-dimensional compressible Navier-Stokes equations in R2[EB/OL].http://arxiv.org/abs/1209.0157.
  • 2Vaigant V A,Kazhikhov A V.On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid[J].Siberian Mathematical Journal,1995,36(6):1108-1141.
  • 3Perepelitsa M.On the global existence of weak solutions for the Navier-Stokes equations of a compressible fluid flows[J].SIAM Journal on Mathematical Analysis,2006,38(4):1126-1153.
  • 4Jiu Q S,Wang Y,Xin Z P.Global well-posedness of 2Dcompressible Navier-Stokes equations with large data and vacuum[EB/OL].http://arxiv.org/abs/1202.1382.
  • 5Jiu Q S,Wang Y,Xin Z P.Global well-posedness of the Cauchy problem of 2Dcompressible Navier-Stokes equations in weighted spaces[EB/OL].http://arxiv.org/abs/1207.5874.
  • 6Jiu Q S,Wang Y,Xin Z P.Global classical solutions to the two-dimensional compressible Navier-Stokes equations in R2[EB/OL].http://arxiv.org/abs/1209.0157.
  • 7Luo Z.Local existence of classical solutions to the twodimensional viscous compressible flows with vacuum[J].Communications in Mathematical Sciences,2012,10(2):527-554.
  • 8Solonnikov V A.On the solvability of the initial-boundary value problem for the equations motion of a viscous compressible fluid[J].Zapiski Nauchnykh Seminarov LOMI,1976,56:128-142.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部