期刊文献+

基于灰度渐变特征的运动车辆阴影检测

Shadow Detection of Moving Vehicle Based on Gray Gradual Characteristics
下载PDF
导出
摘要 针对当前基于颜色特征的阴影检测算法鲁棒性低的缺点,本文提出了一种基于灰度渐变一致性的运动车辆阴影检测算法.首先应用改进的高斯混合模型对背景进行自适应重建和更新,然后根据差分图像中运动阴影在水平和竖直方向上灰度变化一致的特点,提取阴影区域的灰度跳变点,并以灰度跳变点的密度分布为依据分割车身区域和阴影区域,实现对阴影区域的识别与提取.实验结果表明,该算法能够快速有效地提取运动车辆的阴影,同时,本算法在阴影与相邻车辆车身重叠情况下也有较好的检测效果. In view of the disadvantages that the robust of shadow detection algorithm based on shadow color feature is low,a moving vehicle's shadow detection algorithm based on gray gradual consistency is presented.First,using improved Gauss mixture model to reconstruction and update the background area.Then,according to the characteristics that the moving shadow which in the differential image has the similar gray change in horizontal and vertical direction,we could extract the shadow area's edge pixels.Finally,according to the density of these pixels,the shadow area and the vehicle area could be recognized.The experimental results show that the presented algorithm can effectively remove the shadow area.Meanwhile,even the shadow area and vehicle area overlap,this algorithm also has good detection effect.
出处 《三峡大学学报(自然科学版)》 CAS 2015年第4期98-101,共4页 Journal of China Three Gorges University:Natural Sciences
基金 国家自然科学基金项目(51475266 51405264)
关键词 阴影检测 灰度渐变性 运动阴影 背景实时更新 shadow detection gray gradual feature moving shadow background update
  • 相关文献

参考文献15

二级参考文献80

  • 1张凤荔,秦志光,敬万钧.3D图形平行投影的算法研究与实现[J].电子科技大学学报,1994,23(5):510-516. 被引量:4
  • 2肖梅,韩崇昭,张雷.交通监控系统中基于多源信息融合的运动阴影检测[J].西安交通大学学报,2005,39(10):1077-1080. 被引量:9
  • 3Kastrinaki V, Zervakis M, Kalaitzakis K. A survey of video processing techniques for traffic applications [ J ]. Image and Vision Computing,2003,21 (4) :359-381.
  • 4Wu Yi-ming, Ye Xiu-qing, Gu Wei-kang. A shadow handler in traffic monitoring system [ C ]//IEEE Conference on Vehicular Technology. [ S. l. ]:[ s.n. ] ,2002:303-307.
  • 5Prati A, Mikic I, Trivedi M M, et al. Detecting moving shadows :algorithms and evaluation [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003,25 (7) : 918-923.
  • 6Sohail Nadimi, Bir Bhanu. Physical models for moving shadow and object detection in video [J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2004,26 (8) : 1079-1087.
  • 7Yoneyama A, Yeh C H, Kuo C C J. Moving cast shadow elimination for robust vehicle extraction based on 2D joint vehicle/shadow models [ C ]//IEEE Conf on Advanced Video and Signal Based Surveillance. [ S.l. ] : [ s. n. ], 2003:229- 236.
  • 8Cucchiara R, Grana C, Piccardi M, et al. Improving shadow suppression in moving object detection with HSV color information [ C ]//IEEE Transportation Systems Conference Proceedings. [ S. l. ]: [ s. n. ] ,2001:334-339.
  • 9Fung G S,Yung N H, Grantham K H, et al. Effective moving cast shadow detection for monocular color traffic image sequences [ J ]. Optical Engineering,2002,41 ( 6 ) : 1425-1440.
  • 10Lam William W L, Pang Clement C C, Yung Nelson H C. A highly accurate texture-based vehicle segmentation method [ J ]. Optical Engineering,2004,43 (3) :591-603.

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部