期刊文献+

两类树图的Hamiltonian色数 被引量:1

Hamiltonian Chromatic Number for Two Classes of Tree Graphs
下载PDF
导出
摘要 一个n阶连通图G的Hamiltonian染色是从G的顶点集V(G)到正整数集N(称为颜色集)的一个映射c,使得对于G的任意2个不同的顶点u和v满足|c(u)-c(v)|+D(u,v)≥n-1,其中D(u,v)表示G中u到v的最长路径的长度。对一个Hamiltonian染色c,将max{c(u):u∈V(G)}称为c的值,记作hc(c)。将min{hc(c):c是G的任意Hamiltonian染色}称为G的Hamiltonian色数,记作hc(G)。本次研究得到了满足max{D(u,v)|u,v∈V(G),u≠v}≤n/2的d-重似星树和广义双星这两类树图的Hamiltonian色数的确切值。 A Hamiltonian coloring of a connected graph G of order n is an assignment c of colors ( positive in-tegers) to the vertices of G such thatc(u)-c(v)|+D(u,v)≥n-1for every two distinct vertices u and v of G, where D(u,v) is the length of a longest u -v path in G. For an Hamiltonian coloring c, the value of is c, denoted by hc( c), while the Hamiltonian chromatic number of G is rain I hc(c) :c is taken over all humiltonian colorings of G} , denoted by hc(G). In this paper, we obtain the exact values of Hamiltonian chromatic num-ber for d-starlike trees and generalized double stars, as two classes of tree graphs.
出处 《河北科技师范学院学报》 CAS 2015年第2期1-6,共6页 Journal of Hebei Normal University of Science & Technology
基金 河北省自然科学基金项目(项目编号:A2015407063) 秦皇岛市科学技术研究与发展计划项目(项目编号:201401A038) 河北科技师范学资助计划项目(项目编号:CXTD2012-08 2013YB008)
关键词 Hamiltonian染色 Hamiltonian色数 d-重似星树 广义双星 Hamiltonian coloring Hamiltonian chromatic number d-starlike trees generalized double stars
  • 相关文献

参考文献1

二级参考文献7

  • 1Cvetkovic D M, Doob M, Sachs H. Spectra of graphs [M]. New York, 1980.
  • 2Godsil C D. Spectra of trees [J]. Annals of Discrete Mathematics, 1984, 20: 151-159.
  • 3Hoffman A J, Smith J H. On the spectral radii of topologival equivalent graphs [M]. in: M. Fielder(Ed.), Recent Advances in Graph Theory, Academia Praha, Prague, 1975, 273-281.
  • 4Lepovc M, Gutman I. Some spectral properties of starlike trees [C]. Bulletin T.CXXII de l'Academie Serbe des Sciences et des Arts - 2001 Classe des Sciences mathematiques et na- turelles Sciences mathematiques, No 26.
  • 5Stevanovic D. Bounding the largest eigenvalue of tree in terms of the largest vertex degree [J]. Linear Algebra Appl, 2003, 360: 35-42.
  • 6Wang W, Xu C. On the spectral characterization of T-shape trees [J]. Linear Algebra Appl, 2006, 414: 492-501.
  • 7Shi L. The spectral radii of a graph and its line graph [J]. Linear Algebra Appl, 2007, 422: 58-66.

共引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部