期刊文献+

一类非线性R-L分数阶积分微分方程的数值解法 被引量:2

Numerical Solution of a Class of Nonlinear R-L Fractional Integro-differential Equation
下载PDF
导出
摘要 利用Adomian多项式将分数阶积分微分方程中的积分项离散化,进而得到原方程解的级数表达形式,数值算例验证了该分解方法的有效性。 In this paper, Adomian polynomial is used to discrete fractional integro-differentlal equation to ob- tain solution of the original equation, numerical examples show that this method is effective to approximate the numerical result.
出处 《河北科技师范学院学报》 CAS 2015年第2期47-51,共5页 Journal of Hebei Normal University of Science & Technology
关键词 ADOMIAN多项式 分数阶积分微分方程 数值解 Adomian polynomials fractional integro-differential equations numerical solution
  • 相关文献

参考文献9

  • 1张亚鹏,高峰.分数阶粘弹性积分本构模型[J].济南大学学报(自然科学版),2012,26(1):102-105. 被引量:2
  • 2尹建华,任建娅,仪明旭.Legendre小波求解非线性分数阶Fredholm积分微分方程[J].辽宁工程技术大学学报(自然科学版),2012,31(3):405-408. 被引量:21
  • 3Xiaohua Ma, Chengnfing Huang. Numerical solution of fractional integro-differential equations by a hybrid collocation meth- od[ J ]. Applied Mathematics and Computation,2013,219 (12) :6 750-6 760.
  • 4Mustafa Gulsu. Numerical approach for solving fractional Fredholm integro-differential Equation [ J 1-.International Journal of Computer Mathematics,2013,29 (16) = 1-22.
  • 5Zhu Li, Fan Qibin. Numerical solution of nonlinear fractional-order Voherra integro-differential equations by SCW [ J 1. Commun nonlinear Sci Numer Simulat ,2013,18 ( 5 ) : 1 203 - 1 213.
  • 6LI Huang, Xianfang Li. Approximate solution of Fracional integro-differential equations by Taylor expansion method [ J 1. Computer Math Appl,2011,24(62) :1 127-1 134.
  • 7G Adamian. Random Volterra integra equations[ J ]. Math Comput Model,t995,22(8) : 101-102.
  • 8G Adomian, R Rach. Modified Adomian polynomials [ J 1. Math Comput Model, 1996,24 ( 11 ) :39-46.
  • 91张恭庆,林源渠.泛函分析讲义[M].北京:北京大学出版社,2011.

二级参考文献29

  • 1OLDHAM K B, SPANIER J. The Fractional Caculus [ M ]. New York : Academic press, Inc, 1974:46 - 59.
  • 2OLDHAM K B, ERTRAM R. An Introduction to the fractional cal- culus and fractional differential [ M ]. New York : A Wiley-Inter- science Publication, 1993:56 - 66.
  • 3KIRYAKOVA V, AL-SAUABI. Explicit solutions to hyper-bessel integrale quations of second kind [ J ]. Comput Math Appl, 1999, 37(1) :75 -86.
  • 4ZHOU H W, WANG C P, HAN B B, et al. A creep constitutive model forsal trock based on fractional derivatives [ J ]. IntJ Rock Mech MiningSci ,2010,48 ( 1 ) : 1 - 6.
  • 5JUMARIE G. On the representation of fractional brownian motion as integral with respect to ( dt ) ~ [ J ]. Applied Mathematics Letters,2005 ,18 :739 - 748.
  • 6杨小军.分形数学及其在力学中若干应用研究[D].徐州:中国矿业大学工程力学系,2009:1-6.
  • 7JUMARIE G. From lagrangian mechanics fractal in space to frac- tal schroinger's equation via fractional taylor's series[ J ]. Chaos, Solitons & Fractals ,2009,41 : 1950 - 1604.
  • 8JUMARIE G. Moditied riemann-liouville derivative and tractional taylor's series of nondifferentiable functions further results [ J ]. Computers and Mathematics with Applications, 2006,51 : 1367 - 1376.
  • 9JUMARIE G. Table of some basic fractional ea!culus formulae de- rived frohematics Letter [ J ]. Applied Mathematic Letters, 2009, 22:378 - 385.
  • 10JUMARIE G. Lagrange characteristic method for solving class of non linear partial differential equations of fractional order [ J ]. Applied Mathematic Letters ,2006,19 : 873 - 880.

共引文献21

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部