期刊文献+

基于多尺度张量类标子空间的人脸识别算法 被引量:4

Face Recognition Algorithm Based on Multi-scale Tensor Class-label Subspace
下载PDF
导出
摘要 提出一种基于多尺度张量类标子空间的人脸特征提取算法,提高人脸识别对光照的鲁棒性,同时不破坏原始数据固有的高阶结构和数据之间的相关性。采用多尺度小波变换组建人脸三维张量样本,将三维人脸张量空间投影到低维张量子空间,对高维人脸进行降维和特征提取,应用多线性主成分类标算法对样本进行类标号,同时使用最近邻算法完成人脸识别。利用CAS-PEAL-R1东方人脸库进行评测,实验结果表明,该识别算法比经典的主成分分析、线性判别分析和多尺度Gabor识别算法具有更好的识别效果。 The paper proposes a face feature extraction algorithm based on multi-scale tensor class label subspace, which improves the robustness of the light in face recognition without damaging the inherent higher order structure and the correlation between the original data. Multi-scale wavelet transform were used to form 3D face tensor sam pies, which were then projected onto a low dimensional tensor subspace for dimensionality reduction and feature ex traction. The multiple linear principal component class-label algorithm was proposed to label the samples and the nearest neighbor algorithm was utilized to complete face recognition. CAS-PEAL-R1 oriental face database was used for evaluation. The experimental results show that this recognition algorithm has better recognition results than classical recognition algorithms (principal component analysis,linear discriminant analysis, multi-scale Gabor recognition algorithm) ,and has better feasibility.
出处 《山东科技大学学报(自然科学版)》 CAS 2015年第4期55-61,共7页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(61462042 61462045) 同济大学嵌入式系统与服务计算教育部重点实验室开放基金项目
关键词 人脸识别 多尺度变换 张量子空间 多线性主成分分析 类标 face recognition muhi-scale transform tensor subspace multiple linear principal component analysis class-label
  • 相关文献

参考文献19

  • 1Jain A K,Ross A,Prabhakar S.An introduction to biometric recognition[J].IEEE Transactions on Circuits and Systems for Video Technology,2004,14(1):4-20.
  • 2Weickert J.Coherence enhancing diffusion filtering[J].International Journal of Computer Vision,1999,31(23):111-127.
  • 3Abasolo M J,Perales F J.Wavelet analysis for a new multi-resolution model for large-scale textured terrains[J].Journal of WSCG,2003,11(1):126-134.
  • 4Candes E,Romberg J.Quantitative robust uncertainty principles and optimally sparse decompositions[J].Foundations of Computational Mathematics,2006,6(2):227-254.
  • 5冯象初,姜东焕,徐光宝.基于变分和小波变换的图像放大算法[J].计算机学报,2008,31(2):340-345. 被引量:24
  • 6付树军,阮秋琦,穆成坡,王文洽.基于双向耦合扩散的保持特征的边缘锐化和图像增强[J].计算机学报,2008,31(3):529-535. 被引量:21
  • 7徐英,洪治.结合小波去噪的THz图像多尺度增强算法研究[J].传感技术学报,2011,24(3):398-401. 被引量:12
  • 8刘文艺,汤宝平,蒋永华.一种自适应小波消噪方法[J].振动.测试与诊断,2011,31(1):74-77. 被引量:25
  • 9Quentin L,Nacer H.Using the moving synchronous average to analyze fuzzy cyclostationary signals[J].Mechanical Systems and Signal Processing,2014,44(1/2):149-159.
  • 10Turk M,Pentland A.Face recognition using eigenfaces[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Maui,HI,Jun.3-6,1991:586-591.

二级参考文献61

共引文献118

同被引文献33

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部