期刊文献+

四阶Schrodinger方程的动态分歧 被引量:1

Dynamic Bifurcation of the Four-Order Schrodinger Equation
下载PDF
导出
摘要 对具有Dirichlet边界条件的四阶Schrdinger方程给出了分歧分析,证明了当参数λ穿过第一临界值λ=αλ1时,该问题分歧出一个吸引子.该分析以最近创立的新的吸引子分歧理论为基础,同时运用了特征值分析和中心流形约化方法. A bifurcation analysis on the four-order Schrodinger equation with Dirichlet boundary condition is presented in this paper.It is proved that the problem bifurcates an attractor asλcrosses the first critical valueλ=αλ1.The analysis is based on a newly developed attractor bifurcation theory,together with the eigenvalue analysis and the center manifold reduction.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第7期111-116,共6页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金(61273020) 重庆市博士后科研项目特别资助(渝XM201102006)
关键词 四阶Schrodinger方程 分歧 DIRICHLET边界条件 four-order Schrodinger equation bifurcation Dirichlet boundary condition
  • 相关文献

参考文献1

二级参考文献11

  • 1Chow, S. N. & Hale, J. K., Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Science), Vol. 251, Springer-Verlag, New York,1982.
  • 2Constantin, P. & Foias, C., The Navier-Stokes Equations, University of Chicago Press, Chicago, 1988.
  • 3Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol.840, Springer-Verlag, Berlin, 1981.
  • 4Hirsch, M. W., Pugh, C. C. & Shub, M., Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583,Springer-Verlag, Berlin, 1977.
  • 5Hurewicz, W. & Wallman, H., Dimension Theory, Princeton Mathematical Series, Vol. 4, Princeton University Press, Princeton, N. J., 1941.
  • 6Ma, T. & Wang, S. H., Structural classification and stability of incompressible vector fields, Physica D, 171(2002), 107-126.
  • 7Ma, T. & Wang, S. H., Attractor bifurcation theory and its applications to Rayleigh-Benard convection,Communications on Pure and Applied Analysis, 2:3(2003), 591-599.
  • 8Ma, T. & Wang, S. H., Dynamic bifurcation and stability in the Rayleigh-Benard convection, Communication of Mathematical Sciences, 2:2(2004), 159-183.
  • 9Nirenberg, L., Topics in Nonlinear Functional Analysis, with a chapter by E. Zehnder, Notes by R. A.Artino, Lecture Notes, 1973-1974, Courant Institute of Mathematical Sciences, New York University,New York, 1974.
  • 10Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983.

共引文献15

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部