期刊文献+

二维Stokes flow快速多极边界元法及截断误差

Fast Multipole Boundary Element Method for 2D Stokes Flow Problem and Truncation Error
下载PDF
导出
摘要 研究二维Stokes flow问题,给出快速多极边界元法复变函数形式基本解平移格式及计算步骤,得出改进相互作用列表算法并分析其计算效率.分析多极展开截断误差,给出截断项数表达式,说明截断误差可由截断项数控制. In terms of the Fast Multipole Boundary Element Method( FM-BEM),translations with complex function format and main computational steps of the fundamental solution were presented for 2D Stokes flow problem. An algorithm with modified interaction list was obtained and its computational efficiency was analyzed. Truncation errors of the multipole expansion were discussed and a formula for the number of expansion terms was given,which showed that the truncation error can be controlled by the number of expansion terms.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2015年第3期331-333,349,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11301459) 河北省科技计划项目(13210128) 河北省自然科学基金项目(A2015203121)
关键词 STOKES flow问题 计算量级 近远场 多极展开 截断误差 Stokes flow problem operations near-far field multipole expansion truncation error
  • 相关文献

参考文献9

  • 1陈一鸣,李裕莲,周志全,耿万海.角形域上Hermite三次样条多小波自然边界元法[J].辽宁工程技术大学学报(自然科学版),2012,31(1):127-130. 被引量:4
  • 2陈一鸣,赵所所,徐增辉,王乾,武永兵.一类强奇异积分方程的数值求解方法[J].辽宁工程技术大学学报(自然科学版),2011,30(1):157-160. 被引量:7
  • 3Chen Z J,Xiao H.The vectorization expressions of Taylor series multipole-BEM for 3D elasticity problems[J].Computational Mechanics,2009,43(2):297-306.
  • 4Chen Z J,Xiao H,Yang X,et al.Taylor series multipole boundary element-mathematical programming method for 3D multi-bodies elastic contact problems[J].International Journal for Numerical Methods in Engineering,2010,83(2):135-173.
  • 5Wallen H,Jarvenpa A S,Ylaoijala P.Broad and multilevel fast multipole algorithm for acoustic scattering problems[J].Journal of Computational Acoustics,2006,14(4):507-526.
  • 6Shen L,Liu Y J.An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation[J].Computational Mechanics,2007,40(3):461-472.
  • 7Bapat M S,Liu Y J.A new adaptive algorithm for the fast multipole boundary element method[J].Computer Modeling in Engineering&Sciences,2010,58(2):161-183.
  • 8Greengard L F.The rapid evaluation of potential fields in particle systems[M].Cambridge:MIT Press,1987.
  • 9Liu Y J.Fast multipole boundary element method:theory and applications in engineering[M].Cambridge:Cambridge University Press,2009.

二级参考文献18

  • 1余德浩.无界区域非重叠区域分解算法的离散化及其收敛性[J].计算数学,1996,18(3):328-336. 被引量:53
  • 2Martin P A. Exact solution of a simple hypersingular integral equation [J]. Integral Equations Appl., 1992(4): 197-204.
  • 3Chakrabarti A, Mandal B N. Derivation of the solution of a simple hypersingular integral equation[J]. Int. J. Math. Educ. Sci.Technol., 1998(29):47-53.
  • 4Boykov I V, Romaaova E G. Reports of higher educational institutions: the collocation method of solution of hypcrsingular integral equations[R]. The Penza State University: Natural Scienoes, 2006, 5 (in Russian).
  • 5Martin B N, Beta G H, Approximate solution for a class of hypersingular integral equations[J]. Applied Mathematics Letters,2006(29): 1286- 1290.
  • 6Chakrabarti A, Vanden Berghe G. Approximate solution of singular integralequations[J]. Appl.Math.Lett.,2004( 17):553 -559.
  • 7MA Yifei. A study of numerical solution for the model of optimal control theory[J]. Journal of Liaoning Technical University, 2001: 828-832.
  • 8Dzhishkariani A. Approximate solution of one class of singular integral equations by means of the projecdtive-uteratuve methods[J]. Meth.Differ.Equations of Math.Phys.,2005(34): 1-76.
  • 9Mandal B N, Gayen R, Chowdhruy. Water wave scattering by two symmetric circular arc shaped thin plates[J]. J. Engrg. Math.,2002(44): 297-303.
  • 10Chan Y S, Fannjiang AC, Paulino G H. Integral equations with hypersingular kernels-theory and applications to fractrue mechanics[J]. Intemat. J.Engrg.Sci., 2003(41): 683-720.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部