期刊文献+

热源周期振荡条件下一维融化问题的数值研究

Numerical Studies of One-dimensional Melting Problem with Periodic Heat Source
下载PDF
导出
摘要 借助空间坐标变换,把移动区域模型转化为固定区域模型,通过构造显式和隐式两种有限差分格式求解热源周期振荡条件下的一维融化问题.对所构造的两种差分格式分别研究它们的数值稳定性,比较它们的计算量和计算效率;应用这两种差分格式分别数值模拟融化过程中移动边界的运动及液态介质内温度场的分布.数值实验结果表明,这两种差分格式的数值结果吻合得非常好,而隐式差分格式的计算效率要明显优于显式差分格式. Two finite difference schemes,the explicit and implicit schemes,were established to solve the one-dimensional melting problem with periodic heat source,while the moving boundary model of the melting problem was transformed to a fixed boundary model by a simple stretching of the spatial coordinate. The numerical stabilities of the explicit and implicit schemes were studied. The computational complexity and efficiency of these two schemes were compared. Also the evolution of the moving boundary and the temperature distribution were simulated numerically by using these two finite difference schemes for the one-dimensional melting problem with periodic heat source. Numerical experiment results showed that the results obtained from these two schemes were in good agreement,but the computational efficiency of the implicit scheme was much higher than that of the explicit scheme.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2015年第3期334-337,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金项目(41271076) 河南省科技攻关项目(112102310672) 郑州市普通科技攻关项目(121PPTGG363-11) 河南省基础与前沿技术研究计划项目(142300410251 142300410437 132300410347)
关键词 融化 周期性 温度 移动边界 有限差分 melting periodicity temperature moving boundary finite difference
  • 相关文献

参考文献10

  • 1Boureghda A.A modified variable time step method for solving ice melting problem[J].Journal of Difference Equations and Applications,2012,18(9):1443-1455.
  • 2Tadi M.A four-step fixed-grid method for 1D Stefan problems[J].Journal of Heat Transfer,2010,132(11):114502.1-4.
  • 3Myers T G.Optimal exponent heat balance and refined integral methods applied to Stefan problems[J].International Journal of Heat and Mass Transfer,2010,53(5/6):1119-1127.
  • 4Qu L H,Ling F,Xing L.Numerical study of one-dimensional Stefan problem with periodic boundary conditions[J].Thermal Science,2013,17(5):1453-1458.
  • 5Kushwaha M S.An approximate approach for a Stefan problem with periodic boundary condition[J].Journal of Engineering Computers&Applied Sciences,2012,1(1):66-73.
  • 6Javierre E,Vuik C,Vermolen F J,et al.A comparison of numerical models for one-dimensional Stefan problems[J].Journal of Computational and Applied Mathematics,2006,192(2):445-459.
  • 7Uddin R.An approximate-solution-based numerical scheme for Stefan problem with time-dependent boundary conditions[J].Numerical Heat Transfer Part B-Fundamentals,1998,33(3):269-285.
  • 8SavoviS,Caldwell J.Finite difference solution of one-dimensional Stefan problem with periodic boundary conditions[J].International Journal of Heat and Mass Transfer,2003,46(15):2911-2916.
  • 9曲良辉,令锋.带有周期边界条件Stefan问题的一种差分格式[J].肇庆学院学报,2008,29(5):6-9. 被引量:2
  • 10Ozik N.Heat conduction[M].2nd Edition.New York:Wiley,1993.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部