期刊文献+

Clementine软件功能缺陷分析 被引量:2

Function Defect Analyses of Clementine Software
下载PDF
导出
摘要 Clementine是有效的数据挖掘工具之一,能快速建立模型应用于商业活动的辅助决策,目前已得到了广泛的应用.通过理论和实例数据分析,具体指出Clementine软件中离群点检测、特征选择、抽样等节点预测结果存在很大的缺陷,效果并不理想. Clementine is one of the effective data mining tool. It can quickly build model applied to the business activities of the auxiliary decision-making. Clementine has been widely used at present. Through theory and examples data analyses,it was pointed out that the Clementine software had a lot of defects in the predict result of detecting outliers,feature selection,sampling node and the effect is not ideal.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2015年第3期450-453,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61272067) 广东省哲学社会科学"十二五"规划项目(GD14YXW02)
关键词 聚类 离群点检测 特征选择 抽样 功能缺陷 clustering anomaly detection feature selection sampling function defect
  • 相关文献

参考文献7

  • 1Schubert E,Zimek A,Kriegel H P.Local outlier detection reconsidered:a generalized view on locality with applications to spatial,video,and network outlier detection[J].Data Mining and Knowledge Discovery,2014,28(1):190-237.
  • 2Wu S,Wang S R.Information-Theoretic outlier detection for Large-Scale categorical data[J].IEEE Transactions on Knowledge and Data Engineering,2013,25(3):589-602.
  • 3蒋盛益,李庆华,赵延喜.一种两阶段异常检测方法[J].小型微型计算机系统,2005,26(7):1237-1240. 被引量:7
  • 4Jiang S Y,Song X Y,Wang H,et al.A clustering-based method for unsupervised intrusion detections[J].Pattern Recognition Letters,2006,27(7):802-810.
  • 5Bache K,Lichman M.UCI machine learning repository[DB/OL].(2013-04-04)[2014-12-01].http://archive.ics.uci.edu/ml.
  • 6谢娟英,谢维信.基于特征子集区分度与支持向量机的特征选择算法[J].计算机学报,2014,37(8):1704-1718. 被引量:64
  • 7蒋盛益,郑琪,张倩生.基于聚类的特征选择方法[J].电子学报,2008,36(B12):157-160. 被引量:18

二级参考文献44

  • 1毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 2Lewis P M. The characteristic selection problem in recognition system[ J ]. IRE Transaction on Information Theory, 1962, 8 (2) : 171 - 178.
  • 3Mark Last, Abraham Kandel, Oded Maimon. Information-theoretic algorithm for feature selection[ J]. Pattern Recognition Letters,2001,22(6) :799- 811.
  • 4Kononenko I. Estimating attributes: analysis and extensions of RELIEF[ A] .Proc of ECML[ C]. Catania, Italy, Springer-Verlag New York, 1994. 171 - 182.
  • 5Liu H, Moloch H. Feature Selection for Knowledge Discovery and Data Mining[M]. Klumwer, Boston. 1998.
  • 6Hu Q H, Xie Z X, Yu D R. Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation [ J ].Pattern Recognition, 2007, 40(12) :3509 - 3521.
  • 7Swiniarski R W, Skowron A. Rough set methods in feature selection and recognition[ J]. Pattern Recognition Letters,2003, 24(6) :833 - 849.
  • 8Neurnann J, Schnorr C,Steidl O. Combined SVM-based feature selection and classification [ J ]. Machine Learning, 2005, 61 (1):129- 150.
  • 9Huang J J,Cai Y Z, Xu X M.A hybrid genetic algorithm for feature selection wrapper based on mutual information[ J ]. Pattern Recognition Letters, 2007,28(13) : 1825 - 1844.
  • 10Jiang S Y, Song X Y, et al. A clustering-based method for un- supervised intrusion detections[ J ]. Pattern Recognition Letters, 2006,27(7) :802 - 810.

共引文献86

同被引文献57

引证文献2

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部