期刊文献+

Characterization of Essential Stability in Lower Pseudocontinuous Optimization Problems

Characterization of Essential Stability in Lower Pseudocontinuous Optimization Problems
原文传递
导出
摘要 Characterization of essential stability of minimum solutions for a class of optimization problems with boundedness and lower pseudocontinuity on a compact metric space is given. It shows that any optimization problem considered here has one essential component(resp. one essential minimum solution) if and only if its minimum solution set is connected(resp. singleton) and that those optimization problems which have a unique minimum solution form a residual set(however, which need not to be dense).
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第3期638-644,共7页 系统科学与复杂性学报(英文版)
基金 supported by National Natural Science Foundation of China under Grants Nos.11161011and 11161015
关键词 Essential component essential minimum solution pseudocontinuity unique solution. 优化问题 稳定性 表征 紧致度量空间 组成部分 最小解 有界性 基本解
  • 相关文献

参考文献11

  • 1Beer G, On a generic optimization theory of Kenderov, Nonlinear Analysis: Theory, Methods and Applications, 1988, 12: 647-655.
  • 2Kendernov P S, Most of the optimization problems have unique solutions, C. R. Acad. Bulg. Sci., 1984, 31: 297-300.
  • 3Tan K K, Yu J, and Yuan X Z, The stability of Ky Fan's points, Proc. Amer. Math. Soc., 1995, 123: 1511-1519.
  • 4Yu J, Essential weak efficient solutions in multiobjective optimization problems, Journal of Math?ematical Analysis and Applications, 1992, 166: 230-235.
  • 5Yu P L, Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions, Plenum Press, New York, 1985.
  • 6Luo Q, Essential component and essential minimum solution of optimization problems, Journal of Optimization Theory and Applications, 1999, 102: 433-438.
  • 7Morgen J and Scalzo V, Pseudocontinuous functions and existence of Nash equilibria, Journal of Mathematical Economics, 2007, 43: 174-183.
  • 8Klein E and Thompson A C, Theory of Correspondences, Wiley, New York, 1984.
  • 9Fort M K, Points of continuity of semicontinuous functions, Publ. Math. Debrecen., 1951, 2: 100-102.
  • 10Engelking R, General Topology, Polish Scientific, Warsaw, 1977.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部