期刊文献+

A Note on the Tu-Deng Conjecture

A Note on the Tu-Deng Conjecture
原文传递
导出
摘要 Let k be a positive integer. For any positive integer x =∑i=0^∞xi2^i, where xi = 0, 1,we define the weight w(x) of x by w(x) := ∑i=0^∞xi. For any integer t with 0 〈 t 〈 2^k- 1, let St := {(a,b)∈ Z^2|a+b≡t(mod 2^k-1),w(a)+w(b)〈k,0≤a,b≤2^k-2}.This paper gives explicit formulas for cardinality of St in the cases of w(t) ≤ 3 and an upper bound for cardinality of St when w(t) = 4. From this one then concludes that a conjecture proposed by Tu and Deng in 2011 is true if w(t) ≤ 4.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第3期702-724,共23页 系统科学与复杂性学报(英文版)
基金 supported partially by the National Science Foundation of China under Grant No.11371260 the Youth Foundation of Sichuan University Jinjiang College under Grant No.QJ141308
关键词 2-adic valuation Tu-Deng conjecture weight. 猜想 注记 正整数 显式公式 mod ST 基数 权重
  • 相关文献

参考文献1

二级参考文献11

  • 1Armknecht F. Improving fast algebraic attacks. Proceedings of Fast Software Encryption 2004, LNCS, Berlin: Springer-Verlag, 2004, 3017: 65-82.
  • 2Courtois N T. Fast algebraic attacks on stream ciphers with linear feedback. Proceedings of Crypto 2003, LNCS, Berlin: Springer-Verlag, 2003, 2729: 176-194.
  • 3Courtois N T and Meier W. Algebraic attacks on stream ciphers with linear feedback. Proceedings of Eurocrypt 2003, LNCS, Berlin: Springer-Verlag, 2003, 2656: 345-359.
  • 4Meier W, Psalic E, and Carlet C. Algebraic attacks and decomposition of Boolean functions. Proceedings of Eurocrypt 2004, LNCS, Berlin: Springer-Verlag, 2004, 3027: 474-491.
  • 5Dalai D K, Gupta K C, and Maitra S. Results on algebraic immunity for cryptographically sig- nificant Boolean functions. Proceedings of Indocrypt 2004, LNCS, Berlin: Springer-Verlag, 2004, 3348: 92-106.
  • 6Carlet C. On the higher order nonlinearities of algebraic immune functions. Proceedings of Crypto 2006, LNCS, Berlin: Springer-Verlag, 2006, 4117: 584-601.
  • 7Lobanov M. Exact relation between nonlinearity and algebraic immunity. Discrete Mathematics and Applications, 2006, 16: 453-460.
  • 8Rothaus O S. On Bent functions. Journal of Combinatorial Theory Ser. A, 1976, 20: 300-305.
  • 9Wan Z. Geometry of classical groups over finite fields. Second edition, Science Press, Beijing, 2002.
  • 10Carlet C. Boolean functions for cryptography and error correcting codes. As a Chapter of the monography: Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge University Press, Yves Crama and Peter L. Hammer (eds.). In press.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部