期刊文献+

掺铒光纤环形激光器混沌复杂度分析 被引量:4

Chaos Complexity of Erbium-Doped Chaotic Fiber Ring Laser
原文传递
导出
摘要 本文基于自相关及排列熵函数实验研究了掺铒光纤环形激光器混沌序列的复杂度。通过控制腔内损耗来实现光纤激光器不同的混沌态输出,并对其复杂度进行详细分析。实验结果表明:腔内损耗对混沌复杂度影响较大,随着腔内损耗的增大,其排列熵复杂度逐渐变大;自相关曲线上表现出的腔长时延信息也得到有效抑制。通过腔内损耗控制,混沌序列的周期性被完全隐藏,其复杂度达到最大值,这能有效地提高混沌保密通信的安全性,混沌传感和测距的测量精度。 The complexity of the erbium doped fiber ring lasers is experimentally investigated based on the autocorrelation function and permutation entropy function. By controlling the loss in the ring cavity, the different chaotic complexity is analyzed in detail. The experimental results show that the intra-cavity loss has great effect on the chaotic complexity of fiber laser. With increase of the loss, the permutation entropy complexity increases gradually and the time-delay signature shown in the autocorrelation curves can also be suppressed. By controlling the intra-cavity loss, the time-delay signature of chaos is completely hidden and its permutation entropy complexity reaches a maximum, which can effectively improve the security of chaotic secure communications and the measurement precision of chaotic sensing or ranging.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第7期208-213,共6页 Acta Optica Sinica
基金 国家自然科学基金(61107033) 山西省高等学校优秀青年学术带头人支持计划(2012lfjyt05)
关键词 激光光学 混沌 复杂度 时延信息 掺铒光纤激光器 laser optics chaos complexity time-delay signature erbium doped fiber laser
  • 相关文献

参考文献17

  • 1Apostolos Argyris, Dimitris Syvridis, Laurent Larger, et al. Chaos-based communications at high bit rates using commercial fibre- optic links[J]. Nature, 2005, 438(7066): 343-346.
  • 2Lin F Y, Liu J M. Chaotic radar using nonlinear laser dynamics[J]. IEEE Journal of Quantum Electronics, 2004, 40(6): 815-820.
  • 3王斐斐,张丽,杨玲珍,刘艳阳.基于混沌光纤激光的准分布式布拉格传感网络[J].光学学报,2014,34(8):88-92. 被引量:13
  • 4Atsushi Uchida, Kazuya Amano, Masaki Inoue, et al. Fast physical random bit generation with chaotic semiconductor lasers[J] Nature Photonics, 2008, 2(12): 728-732.
  • 5Vladimir S Udahsov, Jean-Pierre Goedgebuer, Laurent Larger, et al. Cracking chaos-based encryption time delay differential equations[J]. Physics Letters A, 2003, 308(1): 54-60.
  • 6Qingchun Zhao, Yuncai Wang,Anbang Wang. Eavesdropping in chaotic optical communication using external-cavity laser as a key[J]. Appl Opt, 2009, 48(18): 3515-3520.
  • 7systems ruled by nonlinear the feedback length of an Pincus S M. Approximate entropy as a measure of system complexity[J]. Mathematics, 1991, 88(6): 2297-2301.
  • 8肖方红,阎桂荣,韩宇航.混沌伪随机序列复杂度分析的符号动力学方法[J].物理学报,2004,53(9):2877-2881. 被引量:26
  • 9孙克辉,贺少波,尹林子,阿地力·多力坤.模糊熵算法在混沌序列复杂度分析中的应用[J].物理学报,2012,61(13):71-77. 被引量:27
  • 10SKane D M, Toomey J P, Lee M W, et al. Correlation dimension signature of wideband chaos synchronization of semiconductor lasers [J]. Optics Letters, 2006, 31(1): 20-22.

二级参考文献51

共引文献120

同被引文献43

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部