期刊文献+

Orlicz-Sobolev空间上对称及非对称拟线性椭圆方程的多解性(英文) 被引量:1

MULTIPLE SOLUTIONS FOR SYMMETRIC AND NON-SYMMETRIC QUASILINEAR ELLIPTIC EQUATIONS: AN ORLICZ-SOBOLEV SPACE SETTING
下载PDF
导出
摘要 本文研究了具光滑边界的有界域上拟线性椭圆问题的多解性.在Orlicz-Sobolev空间中利用变分及扰动的方法,得到了方程在对称及非对称情况下解的存在性和多解性. In this paper, we study multiplicity of solutions for the quasilinear elliptic problem in a bounded domain with smooth boundary. By using variational and perturbed methods in Orlicz-Sobolev space, we prove the existence of multiple solutions both in symmetric and nonsymmetric case.
出处 《数学杂志》 CSCD 北大核心 2015年第4期779-788,共10页 Journal of Mathematics
基金 supported by NSFC-Tian Yuan Special Foundation(11226116) Natural Science Foundation of Jiangsu Province of China for Young Scholar(BK2012109) the China Scholarship Council(201208320435) the Fundamental Research Funds for the Central Universities(JUSRP11118) supported by NSFC(10871096) supported by Graduate Education Innovation of Jiangsu Province(CXZZ13-0389)
关键词 ORLICZ-SOBOLEV空间 拟线性椭圆方程 扰动方法 对称性 Orlicz-Sobolev spaces quasilinear elliptic equations perturbed methods symmetry
  • 相关文献

参考文献14

  • 1Clement P H, Garcla-Huidobro M, Mansevich R, Schmitt K. Mountain pass type solutions for quasilinear elliptic equations[J]. Calc. Var. Partial Differential Equations, 2000, 11(1): 33-62.
  • 2Fukagai N, Ito M, Narukawa M K. Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on RN [J]. Funkcialaj Ekvacioj, 2006, 49(2): 235-267.
  • 3Fukagai N, Narukawa K. On the existence of multiple positive solutions of quasilinear elliptic eigen- value problems [J]. Annadli di Matematica, 200?, 186(3): 539-564.
  • 4Garcfa-Huidobro M, Le V, Mansevich R, Schmitt K. On the principal eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting [J]. Nonlinear Diff. Eqns. Appl, 1999, 6(2): 207-225.
  • 5Tan Zhong, Fang Fei. Orlicz-Sobolev versus H51der local minimizer and multiplicity results for quasilinear elliptic equations [J]. J. Math. Anal. Appl., 2013, 402(1): 348-370.
  • 6Mih.ilescu M, R.dulescu V. Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces [J]. C. R. Acad. Sci. Paris. Ser. I, 2008, 346(7-8): 401-406.
  • 7Bonanno G, Bisci G M, Rdulescu V D. Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz-Sobolev spaces, Nonlinear Anal [J]. 2012, 75: 4441-4456.
  • 8Cern R. Generalized n-Laplacian: quasilinear nonhomogenous problem with critical growth [J]. Nonlinear Anal., 2011, 74(11): 3419-3439.
  • 9Fang Fei, Tan Zhong. Existence and multiplicity of solutions for a class of quasilinear elliptic equa- tions: An Orlicz-Sobolev space setting [J]. J. Math. Anal. Appl., 2012, 389(1): 420-428.
  • 10Adams R A, Fournier J J F. Sobolev spaces (2nd ed.)[M]. Amsterdam: Elsevier/Academic Press, 2003.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部