摘要
本文研究了具光滑边界的有界域上拟线性椭圆问题的多解性.在Orlicz-Sobolev空间中利用变分及扰动的方法,得到了方程在对称及非对称情况下解的存在性和多解性.
In this paper, we study multiplicity of solutions for the quasilinear elliptic problem in a bounded domain with smooth boundary. By using variational and perturbed methods in Orlicz-Sobolev space, we prove the existence of multiple solutions both in symmetric and nonsymmetric case.
出处
《数学杂志》
CSCD
北大核心
2015年第4期779-788,共10页
Journal of Mathematics
基金
supported by NSFC-Tian Yuan Special Foundation(11226116)
Natural Science Foundation of Jiangsu Province of China for Young Scholar(BK2012109)
the China Scholarship Council(201208320435)
the Fundamental Research Funds for the Central Universities(JUSRP11118)
supported by NSFC(10871096)
supported by Graduate Education Innovation of Jiangsu Province(CXZZ13-0389)