期刊文献+

关于Liu-Owa积分算子的双重从属保持性质(英文) 被引量:1

DOUBLE SUBORDINATION PRESERVING PROPERTIES FOR THE LIU-OWA INTEGRAL OPERATOR
下载PDF
导出
摘要 本文研究了单位圆盘内关于Liu-Owa积分算子的多叶解析函数类的从属和超从属保持问题.利用微分从属的方法,获得了该类函数的中间型结果,推广和改进了一些已知结果. In the paper, we investigate subordination and superordination preserving problems for analytic and multivalent functions in the open unit disk, which are associated with the Liu-Owa integral operator. By using the method of differential subordination, we derive sandwichtype results of functions belonging to these classes, which generalize and improve some previous known results.
出处 《数学杂志》 CSCD 北大核心 2015年第4期789-799,共11页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(11271045) Research Fund for the Doctoral Program of China(20100003110004) Natural Science Foundation of Inner Mongolia(2010MS0117) Higher School Foundation of Inner Mongolia(NJzc08160)
关键词 解析和多叶函数 微分从属 超从属 Liu-Owa积分算子 中间型结果 analytic and multivalent function differential subordination superordination Liu-Owa integral operator sandwich-type result
  • 相关文献

参考文献21

  • 1Owa S, Srivastava H M. Some applications of the generalized Libera integral operator[J]. Proc. Japan Acad. Ser. A Math. Sci., 1986, 62: 125-128.
  • 2Bulboac T. Integral operators that preserve the subordination[J]. Bull. Korean Math. Soc., 1997, 32: 627-636.
  • 3Bulboac T. A class of superordination-preserving integral operators[J]. Indag. Math., 2002, 13: 301-311.
  • 4Jung I B, Kim Y C, Srivastava H M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators[J]. J. Math. Anal. Appl., 1993, 176: 138-147.
  • 5Liu J L, Owa S. Properties of certain integral operators[J]. Int. J. Math. Math. Sci., 2004, 3(1): 69-75.
  • 6Gao C Y, Yuan S M, Srivastava H M. Some functional inequalities and inclusion relationships associated with certain families of integral operator[J]. Comput. Math. Appl., 2005, 49:1787 -1795.
  • 7Kaplan W. Close-to-convex schlicht functions[J]. Michigan Math. J., 1952, 2: 169-185.
  • 8Miller S S, Mocanu P T. Differential subordination: theory and applications[M]. Series on Mono- graphs and Textbooks in Pure and Applied Mathematics, Vol. 225, New York, Basel: Marcel Dekker Incorporated, 2000.
  • 9Miller S S, Mocanu P T. Subordinants of differential superordinations[J]. Complex Var. Theory Appl., 2003, 48: 815-826.
  • 10Miller S S, Mocanu P T, Reade M O. Subordination-preserving integral operators[J]. Trans. Amer. Math. Soc., 1984, 283: 605-615.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部