期刊文献+

复射影空间中具有常数量曲率的完备全实子流形

ON COMPLETE TOTALLY REAL SUBMANIFOLDS WITH CONSTANT SCALAR CARVATURE IN THE COMPLEX PROJECTIVE SPACE
下载PDF
导出
摘要 本文研究了复射影空间中具有常数量曲率的完备全实子流形的问题.利用丘成桐的广义极大值原理和自伴随算子,获得了这类子流形的某些内蕴刚性定理. In this paper, the authors study the complete totally real submanifolds with constant scalar curvture in the complex projective space. By making use of the generalized maximal principle and self-adjoint differential operator of Yau, we obtain some intrinsic rigidity theorems.
作者 刘敏
出处 《数学杂志》 CSCD 北大核心 2015年第4期898-904,共7页 Journal of Mathematics
基金 安徽省高等学校自然科学研究项目基金(KJ2011Z149)
关键词 复射影空间 完备 数量曲率 全脐 complex projective space complete scalar curvature totally umbilical
  • 相关文献

参考文献3

二级参考文献10

  • 1张剑锋.A rigidity theorem for submanifolds in S^(n+p) with constant scalar curvature[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2005,6(4):322-328. 被引量:8
  • 2舒世昌,刘三阳.双曲空间H^(n+p)(-1)中具常数量曲率的完备子流形(英文)[J].数学进展,2006,35(2):155-166. 被引量:4
  • 3CHEN Bangyen, OGIUE K. On totally teal submmuifolds [J]. Trans. Amer. Math. Soc., 1974, 193: 257-266.
  • 4LUDDEN G D, OKUMURA M, YANO K. A totally real surface in CP2 that is not totally geodesic [J]. Proc. Amer. Math. Soc., 1975, 53(1): 186-190.
  • 5DU Hongquan. Totally reaJ pseudo-umbilical submanifolds in a complex projective space [J]. J. Hangzhou Univ. Nat. Sci. Ed., 1998, 25:8-14.
  • 6CHERN S S, DO C M, KOBAYASHI S. Minimal Submanifolds of a Sphere with Second Fundamental form of Constant Length [M]. Berlin: Spring-Verlag, 1970, 59-75.
  • 7LI Anmin, LI Jimin. An intrinsic rigidity theorem for minimal submanifolds in a sphere [J]. Arch. Math. (Basel), 1992, 58(6): 582-594.
  • 8Li An-Min,Li Jimin.An intrinsic rigidity theorem for minimal submanifolds in a sphere[J].Archiv der Mathematik.1992(6)
  • 9Shiu-Yuen Cheng,Shing-Tung Yau.Hypersurfaces with constant scalar curvature[J].Mathematische Annalen.1977(3)
  • 10宋卫东.关于具有平行第二基本形式的伪脐子流形[J].数学物理学报(A辑),2000,20(2):158-162. 被引量:6

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部