摘要
本文研究了一类修旧非新的两参数预防维修策略.在预防维修依赖于基准可靠度R的条件下,利用系统的相关可靠性指标建立了平均费用关于R和N(预防维修次数上限)的函数关系.进一步找到了该函数的最小值点,即得到了最优策略(R,N)*.同时通过实例说明了本文的维修策略优于文献[8].
In this paper, a bivariate preventive repair policy is studied, which assumes that preventive repair does not return the system to a "good as new"condition, with the critical reliability R and number of preventive repairs N. Our aim is to determine an optimal mixed policy(R, N)*such that the long-run average cost per unit time is minimized. Finally, an appropriate numerical example is given, which shows that our new policy possesses better performance than the policy given in [8].
出处
《数学杂志》
CSCD
北大核心
2015年第4期945-951,共7页
Journal of Mathematics
基金
中国铁路总公司科技研究开发计划重点课题(2013J006-B)
成都铁路局科技研究开发计划重点课题(CX1304)
关键词
两参数预防维修策略
几何过程
基准可靠度
平均费用
bivariate preventive repair policy
geometric process
critical reliability
average cost rate