期刊文献+

基于基准可靠度和预防维修次数上限的两参数预防维修策略 被引量:1

BIVARIATE PREVENTIVE REPAIR POLICY ON THE CRITICAL RELIABILITY AND NUMBER OF PREVENTIVE REPAIRS
下载PDF
导出
摘要 本文研究了一类修旧非新的两参数预防维修策略.在预防维修依赖于基准可靠度R的条件下,利用系统的相关可靠性指标建立了平均费用关于R和N(预防维修次数上限)的函数关系.进一步找到了该函数的最小值点,即得到了最优策略(R,N)*.同时通过实例说明了本文的维修策略优于文献[8]. In this paper, a bivariate preventive repair policy is studied, which assumes that preventive repair does not return the system to a "good as new"condition, with the critical reliability R and number of preventive repairs N. Our aim is to determine an optimal mixed policy(R, N)*such that the long-run average cost per unit time is minimized. Finally, an appropriate numerical example is given, which shows that our new policy possesses better performance than the policy given in [8].
出处 《数学杂志》 CSCD 北大核心 2015年第4期945-951,共7页 Journal of Mathematics
基金 中国铁路总公司科技研究开发计划重点课题(2013J006-B) 成都铁路局科技研究开发计划重点课题(CX1304)
关键词 两参数预防维修策略 几何过程 基准可靠度 平均费用 bivariate preventive repair policy geometric process critical reliability average cost rate
  • 相关文献

参考文献12

  • 1Barlow R E, Hunter L C. Optimum preventive maintenance policy[J]. Oper. Res., 1960, 8: 90-100.
  • 2Zhang Y L, Yam R C M, Zuo M J. Optimal replacement policy for a deteriorating production system with preventive maintenance[J]. Int. J. Syst. Sci., 2001, 32(10): 1993-1998.
  • 3Zhang Y L. A geometric process repair model with good-as-new preventive repair[J]. IEEE Trans. Reliab., 2002, 51(2): 223-228.
  • 4Cao J H, Cheng K. Introduction to reliability mathematics (revised edition in Chinese)[M]. Beijing: Higher Education Press, 2006.
  • 5Sun H X. Stochastic processes (in Chinese) [M] . Beijing: China Machine Press, 2007.
  • 6Stanley A D J. On geometric processes and repair replacement problems[J]. Microelectronic and Reliability, 1993, 33: 489-491.
  • 7谭林,陈童,郭波.基于几何过程的单部件可修系统最优维修策略[J].系统工程,2008,26(6):88-92. 被引量:18
  • 8Wang G J, Zhang Y L. Optimal periodic preventive repair and replacement policy assuming geo- metric process repair[J]. IEEE Trans. Reliab., 2006, 55(1): 118-122.
  • 9Wang G J, Zhang Y L. A bivariate mixed policy a simple repairable system based on preventive repair and failure repair[J]. IEEE Trans. Reliab., 2009, 33: 3354-3359.
  • 10Brown M, Proschan F. Imperfect repair[J]. Appl, Probab., 1983, 20: 851-859.

二级参考文献15

  • 1Brown M, et al. Imperfect repair[J].Application Probability, 1983,20 : 851-859.
  • 2Nakagawa T. Sequential imperfect preventive maintenance policies[J]. IEEE Transaction Reliability, 1988,37:295-298.
  • 3Sheu S H, et al. A Bayesian approach to an adaptive preventive maintenance model[J]. Reliability Engineering and System Safety, 2001,71 : 33 -44.
  • 4Juang M G, Anderson G. A Bayesian approach on adaptive preventive maintenance problem[J].European Journal of Operational Research, 2004,155 : 455 -473.
  • 5Pham H, Wang H. Imperfect maintenance[J]. European Journal of Operational Research, 1996,94 : 425 -438.
  • 6Lam Y. A note on the optimal replacement problem [J]. Advances in Applied Probability, 1988, 20:479 -482.
  • 7Lam Y. A geometric process maintenance model[J]. Southeast Asian Bulletin of Mathematics, 2003, 27: 295-305.
  • 8Lam Y. A geometric process maintenance model with preventive repair [J].European Journal of Operational Research, 2007,182 :806- 819.
  • 9Zhang Y L, Wang G J. A deteriorating cold standby repairable system with priority in use[J]. European Journal of Operational Research, 2007, 183:278 -295.
  • 10Zhang Y L, Wang G J. A bivariate optimal replacement policy for a multistate repairable system [J]. Reliability Engineering and System Safety, 2007, 92:535-542.

共引文献17

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部