期刊文献+

可数对一映射及相关问题

COUNTABLE TO ONE MAPS AND RELATED MATTERS
下载PDF
导出
摘要 本文研究了■0-sn-度量空间与度量空间之间的关系.利用特殊映射,获得了在序列空间中下述命题等价:(1)空间X是■0-sn-度量空间;(2)存在从度量空间M到X可数对一、序列商、σ映射f;(3)存在从度量空间M到X可数对一、序列商、σ映射f使得对每一个x∈X,■f-1(x)是σ-紧.推广了参考文献[3,4]中的一些结果. In this paper, the connection between N0-sn-metric spaces and metric spaces is discussed by special mapping. The following results are equivalent in a sequential space:(1)X is an N0-sn-metric spaces;(2) There is a metric spaces M and countable to one、sequentially quotient、σ map f : M → X;(3) There is a metric spaces M and countable to one、sequentially quotient、σ map f : M → Xsuch that Nf-1(x) is σ-compact for each x ∈ X. It is the generalization of references [3, 4].
作者 王培
出处 《数学杂志》 CSCD 北大核心 2015年第4期983-986,共4页 Journal of Mathematics
基金 地区基金资助(11061004) 广西青年自然科学基金资助(2014GXNSFBA118015) 玉林师范学院重点项目基金资助(2012YJZD20)
关键词 N0-sn-度量空间 可数对一 序列商映射 N0-sn-metric space countable to one sequentially quotient map
  • 相关文献

参考文献13

  • 1Liu C, Lin S. On countable-to-one maps[J]. Topology Appl., 2007, 154: 449-454.
  • 2王培,李忠民,刘士琴.关于■_0-sn-度量空间(英文)[J].广西科学,2010,17(1):32-35. 被引量:5
  • 3王培,葛洵,刘士琴.■_0-sn-网的注记[J].山东大学学报(理学版),2011,46(4):118-120. 被引量:1
  • 4Arhangel'skill A V. Mapping and spaces[J]. Russian Math. Surveys, 1966, 21: 115-162.
  • 5Foged L. Characterizations of R-spaces[J]. Pacific J. Math., 1984, 110: 59-63.
  • 6Ge Y. Space with countable sn-network[J]. Comments. Math. Univ. Carolinae, 2004, 45(1): 169-176.
  • 7Ge Y. Space with a a-locally finite universal cs-network[J]. Questions and Answers in general topol- ogy, 2000, 18(1): 93-96.
  • 8Boone J R, Siwiec F. Sequentially quotient maps[J]. Czech Math. J., 1976, 26: 174-182.
  • 9O'Meara P. A new class of topological spaces[J]. Uiversity of Alberta dissertation, 1966, 4: 23-40.
  • 10Sirois-Dumais R. Quasi-weakly and quasi-first-countable spaces[J]. Topology Appl., 1980, 11(3): 223-230.

二级参考文献28

  • 1Lin S.Generalized metric spaces and mapping[M].Beijing:Chinese Science Press,1995.
  • 2Liu C,Lin S.On countable-to-one maps[J].TopologyAppl,2007,154(2):449-454.
  • 3Sirois-Dumais R.Quasi-and weakly quasi-first-countable spaces[J].Topology Appl,1980,11(3):223-230.
  • 4Lin S.Sequence-covering maps of metric spaces[J].Topology Appl,2000,109(3):301-314.
  • 5Boone J R,Siwiec F.Sequentially quotient mappings[J].Czech Math J,1976,26:174-182.
  • 6Foged L.Characterizations of (H)-space[J].Pacific J Math,1984,110:59-63.
  • 7Ge Y.On space with a σ-locally finite universal cs-network[J].Questions Answers in General Topology,2000,18(1):93-96.
  • 8Arhangel′skill A V.Mapping and spaces[J].Russian Math Surveys,1966(21):115-162.
  • 9Lin S,Yoshio Tanaka.Point-countable k-networks,closed maps,and related results[J].Topology Appl,1994,59:79-86.
  • 10ARHANGEL'SKILL A V. Mapping and spaces[J]. Russian Math Surveys, 1966, 21:115-162.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部