摘要
开发受控核聚变能被认为是解决人类能源问题的重要途径。但在实际应用中仍存在许多难题,其中托玛卡克装置对第一壁材料具有很高要求。国内外一系列实验研究表明钨具有高熔点、良好的导热性和热冲击性、低热溅额等优点,是未来托卡马克聚变堆中最合适的面向等离子体第一壁材料。但是,钨作为将来工程化应用的面向等离子体材料,存在韧脆转变温度高、再结晶温度低以及聚变环境下高热流和高粒子流下的辐照损伤等问题。本文重点综述了从钨材料组成设计方面提高钨基材料强韧性方法的研究进展,包括合金化、纤维增韧、弥散强化及大塑性变形制备超细晶钨等手段,介绍了实现这些手段采用的材料组成设计、实验方法、作用机制、对钨基材料的改善效果及存在的不足,分析了未来钨基材料强韧化技术的发展趋势。
Exploiting controlled thermonuclear fusion energy was considered as an important solution to solve the energy problem of mankind. But in the practical use of the fusion energy,there are still many problems,for example,Tokamak device has high demands for the first wall materials. A series of experimental studies home and abroad showed that tungsten was considered as the most promising material for plasma first wall of Tokamak fusion reactor in the future,because of its high melting point,good thermal conductivity and thermal shock,and low sputtering. However,tungsten,as the plasma facing materials for engineering application in the future,exhibited problems including high ductile-brittle transition temperature,low recrystallization temperature and irradiation damage problems in the fusion environment of high heat and high particle flow. This paper reviewed the research development of tungsten material composition designing to solve the tungsten brittleness problem,for example,alloying,fiber toughening,dispersion strengthening,large plastic deformation of ultrafine grained tungsten and other means,and the applied material composition designing,experimental methods,mechanism,improvement of the tungsten-based materials and shortcomings were introduced,and the research trend of tungsten-based materials toughening technology in the future was analyzed.
出处
《稀有金属》
EI
CAS
CSCD
北大核心
2015年第8期741-748,共8页
Chinese Journal of Rare Metals
基金
国际热核聚变实验堆(ITER)计划专项项目(2014GB121001
2010GB109004)
中央高校基本科研业务费专项项目(2012HGQC0032)
国家大学生创新项目(201210359013)资助
关键词
钨基材料
面向等离子体材料
强韧化技术
tungsten-matrix materials
plasma facing materials
toughening technology