期刊文献+

基于空时稀疏表示的红外小目标检测算法 被引量:2

Dim Moving Target Detection Algorithm Based on Spatial-temporal Sparse Representation
下载PDF
导出
摘要 提出了一种基于过完备空时字典及其稀疏表示的红外小弱目标运动检测算法。采用K奇异值分解算法学习连续多帧图像的运动信息和形态特征,构建自适应形态过完备空时字典;利用高斯运动模型检验自适应形态过完备空时字典,将其划分为能分别描述目标与背景的目标过完备空时字典和背景过完备空时字典;将连续多帧图像分别在目标过完备空时字典和背景过完备空时字典上稀疏分解,利用几个最大稀疏系数及其空时原子重构信号,增强二者残差来检测小目标信号。实验结果表明,该过完备空时字典不仅能同时描述目标与背景的运动信息和形态特征,极大地提高信号表示的稀疏程度,而且能有效增强目标与背景的特征差异,提高小运动目标的探测能力。 A dim moving target detection algorithm based on over-complete spatial-temporal dictionary and sparse representation is proposed. A spatial-temporal adaptive morphological over-complete dictionary is trained and constructed according to infrared image sequence. It can represent the motion information and morphological feature of target and background clutter. The spatial-temporal morphological over-complete dictionary is subdivided into two categories: target over-complete spatial-temporal dictionary for describing moving target,and background over-complete spatial-temporal dictionary for embedding background. The criteria adopted to distinguish the target spatial-temporal redundant dictionary from the background spatial-temporal redundant dictionary is that the atom in target over-complete spatial-temporal dictionary could be decomposed more sparsely over Gaussian over-complete spatial-temporal dictionary. Subsequently,the image sequence is decomposed on the target and background over-complete spatial-temporal dictionaries,respectively. The dim moving target and background clutter can be sparsely decomposed on their corresponding over-complete spatial-temporal dictionary,yet it couldn't be sparsely decomposedon their background over-complete spatial-temporal dictionary. Therefore,the target and background clutter would be reconstructed effectively by prescribed number of atoms with maximum sparse coefficients in their corresponding over-complete spatial-temporal dictionary,and their residuals would differ so visibly to distinguish target from background clutter. The results show that the proposed approach not only could improve the sparsity more efficiently for dim target image sequence,but also could improve the performance of small target detection.
出处 《兵工学报》 EI CAS CSCD 北大核心 2015年第7期1273-1279,共7页 Acta Armamentarii
基金 国家自然科学基金项目(61071191) 中国科学院光束控制重点实验室基金项目(2014LBC005) 中国博士后基金项目(2014M550455) 重庆博士后科研项目特别基金项目(XM201489) 中央高校基本科研业务费专项资金项目(106112013CDJZR160007 106112014CDJZR165502) 2013年重庆高校创新团队建设计划项目(KJTD201331)
关键词 信息处理技术 小弱目标检测 空时超完备字典 目标空时字典 背景空时字典 信号稀疏重构 information processing technology dim target detection spatial-temporal redundant dictionary target spatial-temporal redundant dictionary background spatial-temporal redundant dictionary signal sparse reconstruction
  • 相关文献

参考文献19

  • 1Bar-Shalom Y, Kirubarajan T, Lin X. Probabilistic data associa- tion techniques for target tracking with applications to sonar, radar and EO sensors [ J]. Aerospace & Electronic Systems Magazine IEEE, 2005, 20(8):37-56.
  • 2Liou R J, Azimi-Sadjadi M R. Dim target detection using high or- der correlation method[ J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(3) :841 - 856.
  • 3Orlando D, Venturino L, Lops M, et al. Track-before-detectstrat- egies for STAP radars [ J]. IEEE Transactions on Signal Process- ing, 2010, 58(2) : 933 -938.
  • 4Li Z, Qi L, Li W, et al. Track initiation for dim small moving in- frared target based on spatial-temporal hypothesis testing[J]. Jour- nal of Infrared, Millimeter and Terahertz Waves, 2009, 30(5):513 - 525.
  • 5Zeng M, Li J, Peng Z. The design of top-hat morphological filter and application to infrared target detection[ J]. Infrared Physics & Technology, 2006, 48(1 ) :67 -76.
  • 6Can Y, Liu R M, Yang J. Small target detection using two-dimen- sional least mean square (TDLMS) filter based on neighborhood a- nalysis [ J ]. International Journal of Infrared and Millimeter Waves, 2008, 29(2) : 188 -200.
  • 7Ting W, Yang S. Weak and small infrared target automatic detec- tion based on wavelet transform [ C ]//International Symposium on Intelligent Information Technology Application. Piscataway, NJ, US : IEEE, 2008:697 - 701.
  • 8Davidson G, Griffiths H D. Wavelet detection scheme for small targets in sea clutter [ J ]. Electronics letters, 2002, 38 ( 19 ) : 1128 - 1130.
  • 9宋相法,焦李成.基于稀疏表示及光谱信息的高光谱遥感图像分类[J].电子与信息学报,2012,34(2):268-272. 被引量:73
  • 10Buzzi S, Lops M, Venturino L. Track-before-detect procedures for early detection of moving target from airborne radars [ J ]. IEEE Transaction on Aerospace and Electronic Systems, 2005, 41(3) :937 -954.

二级参考文献41

  • 1Deshpande S D, Er M H, Venkateswarlu R, et al. Maxmean and max-median filters for detection of small targets [J]. Proc. SPIE,1999 ,3809:74-83.
  • 2Li J C, Shen Z K, Lan T. Detection of spot target in infrared clutter with morphological filter [ J ]. IEEE Aerospace and Electronics, 1996,1 : 168-172.
  • 3Cao Y, Liu R M, Yang J. Small target detection using two- dimensional least mean sqnare (TDLMS) filter based on neighborhood analysis [ J ]. International Journal of Infrared and Millimeter Waves, 2008,29 ( 2 ) : 188-200.
  • 4Liu Z J, Chen C Y, Shen X B, et al. Detection of small objects in image data based on the nonlinear principal component analysis neural network [ J ]. Optical Engineering, 2005,44 ( 9 ) 093604 ( 1-9 ).
  • 5Cao Y, Liu R M, Yang J. Infrared Small Targets Detection Using PPCA [ J ]. International Journal of Infrared and Millimeter Waves, 2008,29 ( 4 ) : 385-395.
  • 6Plumbley M D, Abdallah S A, Blumensath T, et al. Musical audio analysis using sparse representations [ J ]. Proceedings in Computational Statistics ,2006,2 : 104-117.
  • 7Donoho D, Huo X. Uncertainty principles and ideal atomic decomposition [ J ]. IEEE Trans. on Information Theory, 2001,47 ( 7 ) :2845-2862.
  • 8Elad M, Aharon M. Image denoising via sparse and redundant representation over learned dictionaries [ J ]. IEEE Trans. on Image Processing,2006,15(12) :3736-3745.
  • 9Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31 ( 2 ) : 210- 227.
  • 10Candes E J, Tao T. Decoding by linear programming [ J ]. IEEE Trans. on Information Theory, 2005,51 ( 12 ) :4203-4215.

共引文献123

同被引文献20

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部